•	
/	

Reg. No.:

Question Paper Code: U4303

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Fourth Semester

Electrical and Electronics Engineering

21UEE403-PRINCIPLES OF DIGITAL ELECTRONICS

(Regulations 2021)										
Dur	ation: Three hours	Maximum: 100 Marks								
	Answer ALL Questions									
PART A - $(10 \times 1 = 10 \text{ Marks})$										
1.	How many entries wi	ll be in the truth table of	`a 4-input NAND gate?	CO1-1	J					
	(a) 4	(b) 8	(c) 16	(d) 32						
2.	Identify the even pari	ty code from the followi	ng	CO1- U						
	(a) 11001	(b) 1110	(c) 0111	(d) 0110						
3.	6. What will be the number of selection lines in a 16 to 1 Multiplexer?									
	(a) 2	(b) 3	(c) 4	(d) 5						
4.	Which pair of Boolean expressions satisfies the idempotency property?									
	(a) $A + \overline{A} = 1$, $A \cdot \overline{A} = 0$		(b) A+A=A, A . A=A	A						
	(c) $A + 1 = 1$, $A \cdot 1 = A$		(d) $A + 0 = A$, $A \cdot 0 =$	0						
5.	Find the output of SR flip flop when S=1, R=0 is?			CO1-1	J					
	(a) 1	(b) 0	(a) 1	(b) 0						
6.	Find the output of D	Flipflop when D=1?		CO1-1	J					
	(a) 1	(b) 0	(a) 1	(b) 0						
7.	How many natural states will there be in a 4-bit ripple counter?									
	(a) 4	(b) 8	(c) 16	(d) 32						
8.	Internal propagation delay of asynchronous counter is removed by									
	(a) Ripple counter (b) Ring counter (c) Modulus counter (d) Synchronous counter									

9.	The Verilog HDL code starts with the keyword					COI- U
	(a) a	lways	(b) module	(c) end module	(d) items	
10.	Whi	ch of the following	loops are supported b	y verilog?		CO1- U
	(a) i	f-else loop		(b) for loop		
	(c) v	vhile loop		(d) All the above		
			PART – B (5	x 2= 10 Marks)		
11.	Clas	sify the types of Bir	nary Codes based on 1	positional weighting		CO1- U
12.	Exp	lain SOP and POS.				CO1- U
13.	Des	cribe sequential logi	c circuit. Give an exa	imple.		CO1- U
14.	Exp	lain the various type	ous types of Hazards in sequential circuits.			
15.	Wri	te Verilog code to re	ealize EXOR function	l.	C	CO2- AP
			PART – C	(5 x 16= 80 Marks)		
16.	(a)	Explain the types of for each type.	-	weighted codes with an example	CO1- U	(16)
			Or			
	(b)		X-Y and (b) Y-X	0100 and Y = 1000011, perform using 2's Complement and also	CO1- U	(16)
17.	(a)	$F(A,B,C,D) = \sum$	lowing function using m(0,1,2,3,4,6,8,9,10, ubtractor and implem	_	CO2- App	(16)
	(b)	gates. $F(PQ,R,S) = \sum$	Howing function using $m(0,1,2,4,7,10,11,12)$ dder and implement u		CO2- App	(16)
18.	(a)	0 ,	•	it that goes through the count flops for your design.	CO2- App	(16)
	(h)	Design a synchron	ous Modulo-5 Un Co	ounter using JK flip-flops	CO2- App	(16)

19. (a) Develop a PLA circuit to implement the logic function CO3-App (16)A'BC+AB'C+AC' and A'B'C'+BC

Or

(b) Implement the following function using PLA CO3- App (16)F1 (A, B, C) = $\Sigma(1, 2, 4, 6)$;

F2 (A, B, C) = Σ m(0, 1, 6, 7);

F3 (A, B, C) = $\Sigma(2,6)$.

20. (a) Develop Verilog code for full adder using gate level and data flow CO3-App (16)modeling.

Or

(b) Write Verilog code to design 3 to 8 decoder using gate level and CO3-App (16)behavioural modeling.