A

Reg. No.:					

Question Paper Code: 94303

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

Electrical and Electronics Engineering

19UEE403 – PRINCIPLES OF DIGITAL ELECTRONICS

(Regulations 2019)

		(KC	egulations 2019)				
Dur	ation: Three hour	rs.		Maximum: 100 Marks			
		Answ	er ALL Questions				
		PART A	$-(10 \times 1 = 10 \text{ Marks})$				
1.	BCD code range	es from			CO1- U		
	(a) 0 to 1	(b) 0 to 9	(c) 0 to 15	(d) 0 to 7			
2.	Identify the ever		CO1- U				
	(a) 11001	(b) 1110	(c) 0111	(d)0110			
3.	What will be the	number of selection	lines in a 16 to 1 Multiple:	xer?	CO1-U		
	(a) Type- 0	(b) Type -	(c) Type -2	(d) Type -	3		
4.	Find the number	of the gates required	d to build a half adder are		CO1- U		
	(a) EX-OR gate	and NOR gate	(b) EX-OR gate a	(b) EX-OR gate and NOR gate			
	(c) EX-OR gate	and AND gate	(d) Four NAND	(d) Four NAND gates			
5.	What is the outp	ut of SR flip flop wh	en S=1, R=0 is?		CO1-U		
	(a) 1	(b) 0	(c) No change	(d) High in	npedance		
6.	What is output o	of D Flipflop when D	=1?		CO1- U		
	(a) 1	(b)0	(c) No Change	(d) X			
7.	How many natural states will there be in a 4-bit ripple counter?						
	(a) 4	(b) 8	(c) 16	(d) 32			

8.	How much storage capacity does each stage in a shift register represent?						
	(a) (One bit	(b) two bits	(c) four bits	(d) eight bits		
9.	The Verilog HDL code starts with the keyword						
	(a) a	ılways	(b) module	(c) end module	(d) items		
10.	Whi	ch of the foll	owing loops are suppor	ted by verilog?		CO1- U	
	(a) i	(a) if-else loop (b) for loop (c) while loop (d) A				bove	
			PART – B (5 x 2= 10 Marks)			
11.	Con	vert the follo	wing decimal numbers	to the indicated bases		CO1- U	
		7526.75 to (?) ₈ b) 1856.959 to (?) ₁	16			
12.	Define SOP and POS.						
13.	Define a sequential logic circuit. Give an example.						
14.	Define Races .						
15.	. Explain the purpose of developing HDL code for digital design.					CO1- U	
			PART – C	C (5 x 16= 80Marks)			
16.	(a)	(010 (38.2	following (3) ₈ to () ₁₆ (010101000) ₂ to () ₁₆ (21) ₁₀ to () ₂ (1.3) ₁₀ to () ₈ Or		CO1- U	(16)	
	(b)	Explain the example for	types of weighted and r	non-weighted codes with an	CO1- U	(16)	
17.	(a)	(i) Design a	Binary to Gray code co	onverter.	CO2- Ap	p (8)	
		(ii) Design	a half adder and implem Or	ent using logic gates.	CO2- Ap	p (8)	
	(b)	. ,	ent the given function us 2, 6,7,8,9,10,11,12,15)	sing 8 X 1 MUX F (<i>A</i> , <i>B</i> , <i>C</i> ,	D) CO2- Ap	p (8)	
		(ii) Design	3 to 8 decoder using log	ic gates.	CO2- Ap	p (8)	
18.	(a)	Design a se flip-flops.		et the sequence 101 using JK	CO2- Ap	p (16)	
	(b)		-	cuit that goes through the couflip-flops for your design.	unt CO2- Ap	p (16)	

- 19. (a) An asynchronous sequential circuit has two internal states and one CO3- Ana (16) output. The excitation and output function describing the circuit are as follows. $Y_1 = x1.x2 + x1.y2 + x2.y1$, $Y_2 = x2+x1.y1.y2+x1.y1$ Z = x1+x2
 - (i) Draw the logic diagram of the circuit.
 - (ii) Derive the transition table and output map.

Describe the behavior of the circuit.

Or

(b) An asynchronous sequential circuit is described by the following CO3- Ana (16) excitation and output equation.

$$Y = x1.x2 + (x1+x2).y$$
 $Z= Y$

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the transition table and output map.

Describe the behavior of the circuit.

- 20. (a) Implement the following function using PLA, A(x,y,z)= CO2- App (16) $\sum m(1,2,4,6) B(x,y,z) = \sum m(0,1,6,7) C(x,y,z) = \sum m(2,6).$
 - (b) Develop Verilog code to design 8 to 1 multiplexer using dataflow CO2- App (16) and behavioural modeling.