B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and Chemical Engineering)

(Regulation 2015)

	(Regulat	1011 2013)	
Dur	ation: Three hours	Maximum: 100 M	Marks
	Answer AL	L Questions	
	PART A - (10	x 1 = 10 Marks)	
1.	The sufficient condition for the convergence (a) $ f(x)f''(x) > [f'(x)]^2$	the of iteration method is $(b) \emptyset'(x) > 1$	CO1- R
	(c) $ f(x)f''(x) < [f'(x)]^2$	$(d) \emptyset'(x) < 1$	
2.	The condition for convergence of Gauss system of simultaneous algebraic equation (a) 141 0	is	CO1- R
	(a) A = 0	(b) Orthogonal matrix	
	(c) $ A \neq 0$	(d) Diagonally dominant system	
3.	Newton's forward interpolation formula is value of y using a given value of x only wh	7 11	CO2- R
	(a) At the beginning of the table	(b) At the middle of the table	
	(c) At the end of the table	(d) Far beyond the given upper v	alue of 'x'
4.	If only two pair values (x_0, y_0) and Newton's forward formula reduces to	(x_1, y_1) are given then the	CO2- R
	(a) Linear interpolation formula	(b) Non-linear interpolation form	ıula
	(c) Parabolic interpolation formula	(d) Exponential polynomial	
5.	The process of numerical integration of a is called	function of a single variable	CO3- R

(b) Simpson's rule

(a) Trapezoidal rule

(c) Cubature

(d) Quadrature

6.	The order of error in the Trap	pezoidai rule is			CO	3- K
	(a) O(h ⁴)	(b) O(h ³)	(c) $O(h^5)$	(d) O(l	n^2)	
7.	Runge-Kutta method of first	order is same as			CO	4- R
	(a) Euler's method		(b) Modified Euler	's method		
	(c) Taylor series method		(d) Milne's method			
8.	The number of prior values r method is	5	CO	4- R		
	(a) 4	(b) 6	(c) 5	(d) 2		
9.	The equation $u_{xx} + u_{yy} = 0$	is of			CO	5- R
	(a) Elliptic type		(b) Parabolic type			
	(c) Hyperbolic type		(d) Non homogeneo	ous type		
10.	The interval in which the imstable solution is	plicit formula (Crank-	Nicholson) provides	5	CO	95- R
	(a) $0 < \lambda \le 1$	(b) $0 < \lambda \le 2$	(c) $1 < \lambda \le 2$	(d) 0 <	$\lambda \leq \frac{1}{2}$	
		$PART - B (5 \times 2 = 10)$	Marks)			
11.	Find the interval for a positive	ve root of the polynom	$ial x^3 - 2x + 5 = 0$		CO1- A	App
12.	Find y (1) using Lagrange's x: 0 1 3 y: 5 6 50	interpolation formula	from the given data	1:	CO2- A	App
13.	,	Gaussian quadrature f	ormula.		CO3-	App
14.	Find $y(1.1)$ if $y' = x + y$, order.	y(1) = 0 using Taylo	or's series method of	second	CO4-	App
15.	State Crank – Nicholson diff	erence scheme to solv	ve a parabolic equation	on.	CO5- I	2
		PART – C (5 x 16=	80Marks)			
16.	(a) (i) Solve the following semethod, $2x + 3y - z = 5$ 2x - 3y + 2z = 2	• •	Gauss elimination	CO1- A	рр	(8)
	(ii) Solve the system of 28x+4y- z = 32, x Gauss-Seidel Metho	+3y+10z = 24, $2x+1$	7y + 4z = 35 by	CO1- A	pp	(8)
		Or				

- (b) (i) Find the positive root of $f(x) = 2x^3-3x-6 = 0$, by N-R method. CO1- App (8)
 - (ii) Determine the largest eigen value and the corresponding CO1- App (8) eigen vector of

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ -10 & -1 & 2 \end{bmatrix}$$
 by power method.

17. (a) (i) Find y at x = 43, by using Newton's forward interpolation CO2-App formula from the following data, (8)

X	40	50	60	70	80	90
У	184	204	226	250	276	304

(ii) The population of a town in the census is as given in the data. CO2-App (8) Estimate the population in the year 1996 using Newton's backward interpolation.

Year (x)	1961	1971	1981	1991	2001
Population	46	66	81	93	101
(in 000's)					

Or

(b) (i) Using Newton's divided difference formula, find values of CO2- App (8) f (2) from the following data.

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(ii) Find f (27) by using Lagrange's formula for the data given CO2-App (8) below.

X	14	17	31	35
f(x)	68.7	64.0	44.0	39.1

18. (a) (i) Find y' and y'' at x = 1.5 from the following table,

X	1.5	2.0	2.5	3.0	3.5	4.0
У	3.375	7.0	13.625	24.0	38.875	59

CO3- Ana

(8)

(ii) Find $\int_{1.6}^{2.8} f(x) dx$ by Simpsons $(1/3)^{rd}$ rule from the CO3-Ana (8)following table.

X	1.6	1.8	2.0	2.2	2.4	2.6	2.8
f(x)	4.95	6.05	7.39	9.02	11.02	13.46	16.44

Or

 $\iint e^{x+y} dxdy$ using the Trapezoidal and Simpson's rules with h = k = 0.5

 $\frac{dy}{dx} = \frac{y^2 - x^2}{v^2 + x^2}$ given y(0) = 1 at x = 0.2 and x = 0.3 using Runge – Kutta method of 4th order.

Or

CO4- App (8) $\frac{dy}{dx} = 1 - 2xy$, y(0) = 0 by using Taylor Series Method.

(ii) Using Milne's method find y(2) given
$$y' = \frac{1}{2}(x + y)$$
 given CO4- App (8)

y(0) = 2, y(0.5) = 2.636, y(1) = 3.595 and y(1.5) = 4.968.

 $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial v^2} = 0$, subject to

(i)
$$u(0,y) = 0$$
, $0 \le y \le 4$

(ii)
$$u(4,y) = 12 + y$$
, $0 \le y \le 4$

(iii)
$$u(x,0) = 3x$$
, $0 \le x \le 4$

(iv) $u(x,4) = x^2$, $0 \le x \le 4$ by dividing the square into 16 square meshes of side 1.

Or

 $u_{t} = u_{xx}$, 0 < x < 1, t > 0, given $u(x, 0) = u_{t}(x, 0) = u(0, t) = 0$ and $u(1,t) = 100 \sin(\pi t)$. Compute u for 4 times steps with h = 0.25.