Reg. No. :						

Question Paper Code: U5304

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Fifth Semester

Electrical and Electronics Engineering

21UEE504 - INTERNET OF THINGS FOR ELECTRICAL AUTOMATION

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. Name two common communication models used in IoT applications. CO1- U
- Compare and contrast the differences between physical and logical designs in CO1-U IoT architecture. Provide two key distinctions
- 3. What is the fundamental operating principle behind inductive sensors, and CO2-App how does it relate to sensitivity and linearity?
- 4. In what practical application would you choose a capacitive sensor over a CO2-App resistive sensor? Explain.
- 5. Explain the fundamental difference between mechanical switches and solid- CO2-App state switches.
- 6 How does a DC motor differ from an AC motor in terms of power supply and CO2 -App operation?
- 7 How does a System-on-Chip (SoC) differ from a microcontroller in terms of CO2-App functionality and complexity?
- 8 Compare and contrast the key differences between Raspberry Pi and Arduino CO3-Ana boards, focusing on their hardware capabilities and use cases.
- 9 Compare and contrast the differences between industrial automation and CO4-Ana smart traffic control applications in a smart city in terms of their objectives and technologies involved.
- 10 Evaluate the potential challenges and benefits of implementing a smart grid CO5-Ana system in a densely populated urban area within a smart city context.

		PART - B (5 x 16 = 80 Marks)		
11.	(a)	Explain the logical design of IOT in detail.	CO1- U	(16)
		Or		
	(b)	Explain the physical design of IOT in detail.	CO1 -U	(16)
12.	(a)	Explain the working principle of a resistive sensor and provide an example of its use in a practical application. Or	CO1- U	(16)
	(b)	Describe how capacitive sensors work, including their basic construction and their sensitivity to changes in capacitance.	CO1- U	(16)
13.	(a)	Draw and explain various types of Electrical Actuation Systems. Or	CO1-U	(16)
	(b)	Sketch the Solid-state switches sensor and explain its operation	CO1- U	(16)
14.	(a)	Describe the primary components of a typical Raspberry Pi setup for IoT projects.	CO3- Ana	(16)
		Or		
	(b)	Discuss the process of customizing a SoC for specific application requirements.	CO3- Ana	(16)
15.	(a)	Describe initiatives to reduce environmental impact and promote sustainability through IoT-enabled industrial automation. Or	CO5- U	(16)
	(b)	Provide real world examples of how IoT enabled smart lighting	CO5 II	(16)

(b) Provide real-world examples of how IoT-enabled smart lighting CO5-U (16) can enhance user comfort and productivity in office environments.