$B.E.\,/\,B.Tech.\,DEGREE\,EXAMINATION,\,MAY$

Fifth Semester

Electrical and Electronics Engineering

19UEE920- MACHINE LEARNING

(Common to ALL branches)

(Regulation 2019)

Dura	O Marks								
PART A - $(10 \times 1 = 10 \text{ Marks})$									
1.	Application of machi	CO1 -R							
	(a) data mining	(b)artificial intelligence	(d) internet of things						
2.	In what type of learni	CO1 -R							
	(a)unsupervised learning	(d)active learning							
3.	Regression trees are of	CO2- R							
	(a) Linear	(d) Symmetrical							
4	How do you choose to	CO2- R							
	(a)attribute with high entropy	(d) None of the mentioned							
5	ID3 stands for	CO3- R							
	(a)Induction Decision Tree	(b) Iterative Data base	(c)Iterative Dichotomiser	(d)Iterative Decision Tree					
6	The output of training	CO3- R							

	(a)machine learning model	(b)machine learning algorithm	(c) null	(d) accu	ıracy			
7	You are given reviewed negative and neutral. example of	CO4- App						
	(a)supervised learning	(d) reinforcement learning						
8	finds the most example	CO4- R						
	(a) Find-S (b) Rote-Learn (c)Candidate Elimination (d) All							
9	Back propagation is a learning technique that adjusts weights in the neural network by propagating weight changes							
	(a) Forward from source to sink							
10	The Bayes rule can be used in							
	(a) Solving queries (b)Increasing (c)Decreasing (d) probability (complexity)							
		PART – B (5 x 2=	= 10Marks)					
11.	. Define Machine Learning. Explain with examples why machine learning is important?							
12.	Differentiate between Gradient Descent and Perceptron training rule.							
13.	Explain Brute force Bayes Concept Learning.							
14.	Consider a medical diagnosis problem in which there are two alternative hypotheses:							
	i. That the patient has a particular form of cancer (+) and							

												1	
	ii. That the patient does not (-). A patient takes a lab test and the result comes										comes		
	back positive. The test returns a correct positive result in only 98% of the case												
	in which the disease is actually present, and a correct negative result in or												
	97% of the cases in which the disease is not present. Furthermore, .008 of the												
	•												
	entire population have this cancer. Determine whether the patient has Cancer or												
	not using MAP hypothesis.												
15.	Exp	lain the me	ethod	s invol	ved in	n learnin	ıg disju	ıncti	ve sets of 1	rules.		C	O5 -U
		PART – C (5 x 16= 80Marks)											
1.0													(4.5)
16.	(a)	Explain to	ne ste	eps in c	esign	ing lear	ning sy	sten	ns in detail	•	CO1	-U	(16)
						C)r						
	(b)	Describe	the p	rocedu	re of	building	Decis	ion t	ree using l	D3 with			
		Gain and	Entro	opy. Ill	ustrat	e with e	example	e.			CO1-U		(16)
17.	(a)	Write the	final	versio	n spa	ce for th	ne belo	w-m	entioned tr	aining			
		example	using	the ca	ndida	te elimii	nation	algoı	rithm.				
		Origin Manufacturer Color Decade Type Example Type											
		Japan	Hon	ıda		Blue	1980)	Economy	Positive	CO	CO2 -	
		JapanToyotaGreen1970SportsNegative						Ap		(16)			
		JapanToyotaBlue1990EconomyPositive							7 1		Р		
		USA	Chr	yster		Red	1980						ſ
		Japan	Hon			White	1980		Economy				
		Japan	Toy			Green	1980		Economy				
		Japan	Hon	Honda Red 1980 Economy Negative									
	Or												
	(b)	(b) With the given data set, find B ₀ and B ₁ by using logistic Regression.											
			•			-	1 .	,		C			
	When $X = 6$, find the value of Y. $X 1 2 4 3 5$ $X 1 2 4 3 5$										(16)		
		X	1	2	4	3					Ap	p	(10)
		Y	1	3	3	2	5						
18.										-	(16)		
										Ana			
		Marks	99	59	97	87		77	67 57	47 40			

	(b)	By using the	CO3- Ana	(16)						
		find the optin	Tila							
19.		Derive an equa	CO4- Ana	(16)						
				C)r					
	(b)	Consider the	sample	dataset menti	oned below a	nd calcula	te $\frac{\partial L}{\partial W1}$ by	CO4- Ana	(16)	
		using back p	ropagat	tion algorithm	. Assume 1. Y	our netwo	ork has			
		only one hid	den lay	er. 2. All the v	weights are eq	ual to 1 an	d all the			
		bias are equa	al to 0.							
		ľ	Name Weight (lb) Height (in) Gender							
		A	Alice 133 65 F							
		Bob 160 72 M								
		Charlie 152 70 M								
		D	Diana	120	60	F				
20.	(a)	Draw the per	CO5-U	(16)						
		of gradient de								
	(b)	Explain Q Le	earning	and learning s	et of rules in l	FOIL.		CO5- U	(16)	