	Reg. No. :							
	Question Paper Code: 99320							
	B.E. / B.Tech. DEGREE	EXAMINATION, APRIL 2024						
	Ι	Elective						
	Electrical and E	lectronics Engineering						
	19UEE920- MA	ACHINE LEARNING						
	(Regu	lations 2019)						
Dur	ation: Three hours	Maximum: 100 Marks						
	PART A - (10 x 1 = 10 Marks)						
1.	If machine learning model output involv model is called as	ves target variable then that CO1 -R						
	(a) descriptive model	(b) predictive model						
	(c) reinforcement learning	(d) all of the above						
2.	2. In what type of learning labeled training data is used							
	(a) unsupervised learning	(b) supervised learning						
	(c) reinforcement learning	(d) active learning						
3.	Regression trees are often used to be	CO2- R						
	(a) Linear (b) Non-linear	(c) Categorical (d) Symmetrical						
4	How do you choose the root node while	constructing a Decision Tree? CO2- R						
	(a) attribute with high entropy	(b) high entropy and information gain						
	(c) largest information gain	(d) None of the above						
5	ID3 stands for	CO3- R						
	(a) Induction Decision Tree	(b) Iterative Data base						
	(c) Iterative Dichotomiser	(d) Iterative Decision Tree						
6	The output of training process in machin	ne learning is CO3- R						
	(a) machine learning model	(b) machine learning algorithm						
	(c) null	(d) accuracy						

7	You are given reviews of few netflix series and neutral. Classifying reviews of a new net	1 0	CO4- App			
	(a) supervised learning (b) unsupervised learning				
	(c) semisupervised learning (d) reinforcement learning				
8	finds the most specific hypothes	is consistent with the training	CO4- R			
	example					
	(a) Find-S (b) Rote-Learn (c) C	Candidate Elimination (d) All o	of the above			
9	Back propagation is a learning technique t network by propagating weight changes	hat adjusts weights in the neural	CO5- R			
	(a) Forward from source to sink					
	(b) Backward from sink to source					
	(c) Forward from source to hidden nodes					
	(d) Backward from sink to hidden nodes					
10	The Bayes rule can be used in		CO5- R			
	(a) Solving queries	(b) Increasing complexity				
	(c) Decreasing complexity	(d) Answering probabilistic query				
	PART - B (5 x Z)	2= 10Marks)				
11.	Explain different perspectives and issues in M	Iachine Learning.	CO1-U			
12.	Write a note on (i) Perceptron Training Rule	(ii) Gradient Descent and Delta	CO2-U			
	Rule. cuss some applications of machine learning with examples.					
13.	Discuss the major drawbacks of the K-neare	st Neighbor learning Algorithm	CO3 -U			
	and how it can be corrected.					
14.	Discuss Maximum Likelihood and Least Squ	are Error Hypothesis.	CO4 -App			
15.	Define (i) Prior Probability (ii) Condition	nal Probability (iii) Posterior	CO5 -U			
	Probability					
	•	x 16= 80Marks)				
16.	(a) Explain					
	(i) Concept Learning (8 marks)	CO1	-U (16)			
	(ii) First order Rules (8 marks)					

Or

(b) Explain the steps in designing learning systems in detail. CO1-U (16)

17. (a) Write the final version space for the below-mentioned training CO2 -App (16) example using the candidate elimination algorithm.

Origin	Manufacturer	Color	Decade	Туре	Example Type		
Japan	Honda	Blue	1980	Economy	Positive		
Japan	Toyota	Green	1970	Sports	Negative		
Japan	Toyota	Blue	1990	Economy	Positive		
USA	Chryster	Red	1980	Economy	Negative		
Japan	Honda	White	1980	Economy	Positive		
Japan	Toyota	Green	1980	Economy	Positive		
Japan	Honda	Red	1980	Economy	Negative		
Or							

(b) With the given data set, find B_0 and B_1 by using logistic CO2 -App (16) Regression.

When X = 6, find the value of Y.

X	1	2	4	3	5
Y	1	3	3	2	5

18. (a) Classify a set of 10 students in to two clusters based on the CO3 -Ana (16) obtained marks and rank using appropriate method. (Analyze)

Marks	99	59	97	87	86	77	67	57	47	40
Rank	1	7	2	3	4	5	6	8	9	10
Or										

- (b) By using the fitness function as f(x) = 2x with the interval [0, CO3-Ana (16) 15], find the optimal solution using appropriate algorithm.
- 19. (a) Derive an equation for MAP hypothesis using Bayes theorem and CO4- Ana (16) explain Maximum Likelihood Hypothesis for predicting probabilities.

Or

(b) Consider the sample dataset mentioned below and calculate $C = \frac{\partial L}{\partial W1}$ by using back propagation algorithm. Assume 1. Your

network has only one hidden layer. 2. All the weights are equal to 1 and all the bias are equal to 0.

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	М
Charlie	152	70	М
Diana	120	60	F

20.	(a)	Explain Back Propagation algorithm with example.	CO5-U	(16)
		Or		

(b) Explain

CO5- U (16)

- (i) Radial Basis Function (8 marks)
- (ii) Case Based Reasoning (8 marks)