A	
/	
\Box	

Reg. No. :					

Question Paper Code: 99375

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Open elective

Civil Engineering

19UEE975 -PRINCIPLES OF ROBOTICS

	(Common to C	CSE, ECE, MECH	H, EIE , IT and Chem	ical Engineer	ring)
		(Regu	lation 2019)		
Dura	ation: Three hours			Maximu	m: 100 Marks
		Answer	ALL Questions		
		PART A - ($10 \times 1 = 10 \text{ Marks}$		
1.	The Robot designed wi	th Cartesian coor	dinate systems has		CO1- R
	(a) Three linear moven	nents			
	(b) Three rotational mo	ovements			
	(c) Two linear and one	rotational mover	nent		
	(d) Two rotational and	one linear mover	nent		
2.	Robot is derived from	Czech word	·		CO1- R
	(a) Rabota	(b)Robota	(c) Rebo	ota	(d) Ribota
3.	The Horsepower of more respectively is		PM and Torque is 30	00 & 6 in-lbf	CO2- R
	(a) 0.286	(b) 1.2	(c) 2800		(d) none of these
4.	In Fleming's left-hand	rule the thumb p	oints towards the dire	ection of	CO2- R
	(a) Force	(b) Current	(c) Magr	netic field	(d) Both a & b
5.	Lead through methods	referred to as		_ method.	CO3- R
	(a) Tech by showing	(b) Learning	(c) Compliance	(d) Artifici	al intelligence

For a robot unit to be considered a functional industrial robot, typically,

(c) six

how many degrees of freedom would the robot have?

(b) four

(a) three

CO₃-R

(d) eight

7.	hand	Kinematics will enable to determine where the Robo will be if all joint variable are known.	ot's CO4- R				
	(a) F	orward (b) Reverse (c) Inverse (d) 7	Transformation				
8.	A se	nsor used in path determination robot	CO4- R				
	(a) u	Itrasonic sensor (b) IR sensor (c) proximity sensor Bits (d)	echo sensor				
9.		ch of the following places would be LEAST likely to include ational robots?	e CO5- R				
	(a) V	Varehouse (b) Factory (c) Hospitals (d) l	Private homes				
10.	Auto	mation with little human touch is known as	CO5- R				
	(a) A	automation (b) Autonomation (c) Semi worker (d) Ma	nual work				
		PART - B (5 x 2= 10 Marks)					
11.	Defi	ne Robotics.	CO1- U				
12.	Analyze the difference between electronic and pneumatic manipulators. CO2- Ana						
13.	What is application of machine vision system? CO3- U						
14.	Distinguish Kinematics and Dynamics. CO4- U						
15.	Expl	CO5- U					
		PART – C (5 x 16= 80 Marks)					
16.	(a)	Briefly describe the Robotic Systems with a neat sketch. Or	CO1- U (16)				
	(b)	Explain in details about the Degree of freedom with a neat sketch.	CO1- U (16)				
17.	(a)	Compare hydraulic, pneumatic and electrical drives. Sketch and explain pneumatic actuators. Or	CO2-U (16)				
	(b)	Explain in details about DC PMMC motor and Brushless DC motor with a neat sketch	CO2-U (16)				
18.	(a)	Explain about the different stages of machine vision system and its types of illumination systems.	CO3-U (16)				
	(h)	Or Discuss in detail about Proximity sensors and Touch sensors	CO3-II (16)				

19. (a) Illustrate in detail the forward and inverse problem of CO4-U (16) manipulator kinematics in robots.

Or

- (b) Explain about Jacobian in terms of D-H matrices in Robot CO4- U (16) Kinematics.
- 20. (a) Discuss in details about Block Diagram of Robot control System CO5-U & motion control. (16)

Or

(b) Explain in details about Force Control with a neat sketch. CO5- U (16)