\mathbf{A}	Reg. No. :								
	Questi	on Pape	r Code	: U30	23				
	B.E./B.Tech. DEG	REE EXA	MINATI	ION, M	1AY 202	4			
		Third Ser	nester						
	Electronics an	nd Commu	nication 1	Engine	ering				
21UMA	323- NUMERICA	AL ANAL	YSIS AN	D LIN	EAR AL	GEBRA			
	(Regulation	ns 2021)						
Duration: Three hours Maximu						laximum	n: 100 Marks		
	Aı	nswer All	Questions	S					
	PART	A - (10x)	1 = 10 M	arks)					
1. Trapezoidal rule	is so called, becau	use it appro	oximates	the inte	egral by	the sum		CO1-	U

Trapezoidal rule is so called, because it approximates the integral by the sum oftrapezoids						
(a) n	(b) n+1	(c) n-1	(d) 2n			
Gaussian three point degree	quadrature formu	ıla is exact for poly	nomials up to	CO1- U		
(a) 1 (b) 2		(c) 3	(d) 5			
Taylor Series method will be very useful to give some values for RK, Milne's and Adam's methods						
(a) initial	(b) final	(c) intermediate	e (d) two			
prior values are required to predict the next value in Milne's method						
(a) 1	(b) 2	(c) 3	(d) 4			
PDE of second order, if $B^2 - 4AC < 0$ then						
(a) parabolic	(b) elliptic	(c) hyperbolic	(d) Non homogene	ous		
Bender-Schmidt recurrence equation is valid if λ =						
(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) 1			
The trivial subspaces	of a vector space V	are		CO4- U		
(a) {0}	(b) V	(c) W	(d) $\{0\}$ and V	V		
	oftrapezoids (a) n Gaussian three point degree (a) 1 Taylor Series method Milne's and Adam's n (a) initial prior values are (a) 1 PDE of second order, (a) parabolic Bender-Schmidt recur (a) $\frac{1}{2}$ The trivial subspaces	oftrapezoids (a) n	oftrapezoids (a) n	oftrapezoids (a) n		

8.	The	dim(R ³) is					(CO6- U
	(a) 1		(b) 2		(c) 3	(d)	0 0	
9.	The	norm of (3, -4	4,0) is				CC)5- App
	(a) 3	3	(b) -4		(c) 0	(0	d) 5	
10.	For	any two vector	ors x and y in	n an inner	product space	V , $ \langle x, \rangle $	$ y\rangle \leq$	CO6- U
	(a)	x + y	(b) $ x y $		(c) $ x - y $	(d)	$\ x\ /\ y\ $	
			PART	$T - B (5 \times 2)$	= 10Marks)			
11.		e Newton's vatives of y at	backward interpose $x = x_n$	polation f	ormula to con	npute first	two	CO1- U
12.	Usir	ng Taylor's ser	ries method find	y(0.1) give	$\mathbf{n} \ \mathbf{y}' = 1 + \mathbf{y} \mathbf{W}$	ith y(0) = 1	CC)2- App
13.	State	e Bender-Schn	nidt explicit forn	nula to solv	e the one dimer	sional heat	(CO3- U
	equa	$\frac{\partial^2 u}{\partial x^2} = a$	$\frac{\partial u}{\partial t}$					
14.	State	e Rank nullity	theorem				(CO4- U
15.	Find	the norm of ($1,2,3$) in $V_3(R)$	with stand	ard inner produ	ct.	C	O5 App
			PAI	RT - C (5)	x 16= 80Marks)			
16.	(a)		the first and seco	ond derivati	ves of y at x = 1	I from the	CO1-App	(8)
		following dat	a 2 3	1				
		x 1 y 1	8 27	64				
	(ii) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ with 6 equal intervals by							(8)
		(a) Trapez	U					
		(b) Simps	$\frac{1}{3}$ rule.					
		(°) ~P°		Or				
	(b)	(i) Evaluate	$\int_{0}^{2} \frac{dx}{4+x^{2}} \text{using}$	g Romberg	s's method cor	rect to 4	CO1 -App	(8)
		decimal plac	es.					(0)
		(ii) Evaluate	$\int_{1}^{5} \frac{1}{x} dx \text{using}$	three po	int Gaussian c	quadrature	CO1 -App	(8)
		formula						
				2				

17. (a) (i) Using Taylor's series method find
$$y(1.1)$$
 given $y' = x + y$ CO2 -App with $y(1)=0$

(ii) Using Euler's method find
$$y(0.1)$$
 and $y(0.2)$ from $y' = 1 - y$, CO2 -App $y(0)=0$

Or

(b) (i) Using R-K method of fourth order, find y(0.1) for the initial CO2 -App value problem $\frac{dy}{dx} = x + y^2$, y(0) = 1

(ii) Given
$$\frac{dy}{dx} = x^3 + y$$
, $y(0) = 2$, $y(0.2) = 2.443$, $y(0.4) = 2.99$, CO2 -App (8) $y(0.6) = 3.68$. Calculate $y(0.8)$ by Milne's Predictor & Corrector method.

18. (a) (i) Solve
$$\frac{\partial^2 u}{\partial x^2} = 32 \frac{\partial u}{\partial t}$$
, $u(0,t) = 0$, $u(1,t) = t$, $u(x,0) = 0$. CO3-App (8)

Take h = 0.25 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

u(0,t)=0 , u(1,t)=t , u(x,0)=0. compute u for one time step function with h=0.25 .

Or

(b) Solve the Poisson equation
$$\mathbf{u}_{xx} + \mathbf{u}_{yy} = -81 xy$$
, $0 < x < 1$, CO3-App (16) $0 < y < 1$, $u(0,y) = 0$, $u(x,0) = 0$, $u(1,y) = 100$, $u(x,1) = 100$ and $u(x,1) = 100$

19. (a) (i) Verify the vectors
$$(1,2,0)$$
, $(2,3,0)$, $(8,13,0)$ in \mathbb{R}^3 is a basis of CO4-App (8)

(ii) If
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be a linear transformation defined by CO4-App $T(a_1, a_2) = (a_1 + a_2, a_1)$ then find nullity(**T**) ,rank(**T**), Is **T** one-to-one? Is **T** onto? Also check the rank nullity theorem..

Or

- (b) (i) Find the dimension of the subspace spanned by the vectors CO4-App (1,2,-3), (0,0,1), (-1,2,1) in $V_3(R)$
 - (ii) Find the matrix of the linear transformation CO4-App (8) $T: V_2(R) \to V_3(R)$ defined by T(a,b) = (a+3b,0,2a-4b) for the standard basis of $V_2(R)$
- 20. (a) Apply Gram-Schmidt process to construct an orthonormal basis CO5- App for $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1, -1, 0)$, $v_2 = (2, -1, -2)$ and $v_3 = (1, -1, 2)$

Or

- (b) (i) Show that the following function defines an inner product on CO5- App $V_2(R)$ where $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ and $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2)$ and $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}_1 \mathbf{y}_1 + 2 \mathbf{x}_2 \mathbf{y}_2$ (8)
 - (ii) If x = (2, 1 + i, i) and y = (2 i, 2, 1 + i) then verify CO5-App (8) Schwarz's inequality