C		Reg. No. :												
	Question Paper Code: U3404													
	В	.E./B.Tech. DEGR	EE EXA	AMIN	ATIC	DN, N	MAY	2024	1					
	Third Semester													
	Electronics and Communication Engineering													
21UEC304 – SIGNALS AND SYSTEMS														
(Regulations 2021)														
Dur	Duration: Three hours Maxim										um: 100 Marks			
Answer ALL Questions														
PART A - $(5 \times 1 = 5 \text{ Marks})$														
1.	A resistive-capacitive network is asystem.									CO1- U				
	(a) causal & static (b) Non causal & static													
	(c) causal &dynamic (d) Non causal &dynamic													
2.	If x (t) is odd, then its Fourier series coefficient must be										CO1- U			
	(a) Real and odd	a) Real and odd (b) imaginary and odd (c) real and even (d) imagin									nary and even			
3.	If F(s) = L[f(t)] = $\frac{2(s+1)}{s^2 + 4s + 7}$ then the initial value of the signal is										C	03	App	
	(a) 0	(b) 2 (c) 1/2							(d) infinity					
4.	Let $(n) = (1/2)^n (n)$, $(n) = x^2(n)$ and $Y(e^{j\omega})$ be the Fourier Transform of $y(n)$. CO4- A Then $y(e^{j^0})$ is												Арр	
	(a) 1/4	(b) 2	(c) 4						(d) 4/3					
5.	The ROC $X(z)$ can	nnot contain any								CO1- U				
	(a) poles	(b) zeros	os (c) poles or zeros (d) m							ultiple poles				
		PART –	B (5 x	3= 15	Mark	xs)								
6.	State the relation between Impulse, step and ramp signals.									CO1- U				
7.	State and prove the Parseval's theorem in Fourier series.									CO1- U				
8.	State the initial and final value theorem of the Laplace transform.										CO1- U			
9.		of convolution sum t to impulse respon		the co	onditio	on fo	or the	e syst	em t	o be		CO	1- U	

10. Derive the relationship between z-transform and Fourier transform.

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) A mathematical expression for the discrete-time signal x [n] is CO2- App (16) given

$$x(n) = \begin{cases} n, & 0 \le n \le \\ 3, & n = 4 \\ 0, & else \end{cases}$$

Sketch and label each of the following signals.

3

(i) x[n-2]; (ii) x[2n]; (iii) x[-n]; (iv) x[-n+2]

Or

(b) Draw the wave forms represented by following step functions. CO2- App (16) (i) f1(t) = 2 u(t-1) (ii) f2(t) = -2u(t-2)(iii) f(t) = f1(t) + f2(t) (iv) f(t) = f1(t) - f2(t)

12. (a) Obtain the trigonometric Fourier series for the half wave rectified CO3-App (16) Sine function of 't'.

Or

- (b) Obtain the Fourier Transform of the signal e^{-|t|} and plot its CO3- App (16) magnitude and phase spectrum.
- 13. (a) Realize the following LTI system in Direct form, cascade and CO6-Eva (16) parallel structure. Comment on the results obtained.

$$\frac{d^{3}y(t)}{dt^{3}} + 4\frac{d^{2}y(t)}{dt^{2}} + 7\frac{dy(t)}{dt} + 8y(t) = 5\frac{d^{2}x(t)}{dt^{2}} + 4\frac{dx(t)}{dt} + 7x(t)$$

Or

- (b) Obtain the convolution of the given two signals using the CO5- Ana (16) convolution property of the Laplace transform and evaluate the results also with the conventional method of convolution. $x(t) = e^{-3t} u(t)$ and $y(t) = e^{-2t} u(t)$
- 14. (a) Find the DTFT of the given signal $x(n) = a^{|n|}$ and plot magnitude CO4-Ana (16) and phase spectrum.

Or

(b) Find the convolution of the given two signals using the CO4- Ana (16) convolution property of DTFT.

 $x(n) = (1/2)^n u(n)$ and $h(n) = (1/3)^n u(n)$

15. (a) Realize the direct form I, direct form II, cascade and parallel CO6-Eva (16) structure for the given difference equation. Comment on the results obtained.

y(n) - 6 y(n-1) + 6 y(n-2) = x(n) + 3x(n-2)

(b) Consider an LTI system with impulse response CO5-Ana (16)

$$h[n] = \begin{cases} a^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

and input

$$x[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & otherwise \end{cases}$$

Determine the output y[n] by explicitly evaluating the discrete convolution of x[n] and h[n]