4	-	٦
4	1	١,
u	l	

Reg. No.:						

Question Paper Code: U3402

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024

Third Semester

Electronics and Communication Engineering

		21UEC302 – DIC	GITAL ELECTRONICS A	AND DESIG	GN		
			(Regulation 2019)				
Duration: Three hours Maximum						: 100 Marks	
		A	Answer ALL Questions				
		PA	RT A - $(5 \times 1 = 5 \text{ Marks})$)			
1.	1. The Boolean function Y=AB+CD is to be realized using only 2-input NAND gates. The minimum number of gates required is						
	(a) 2	(b) 3	(c) 4		(d) 5		
2.	2. In a combinational circuit, the output at any time depends only on the at that time.						
	(a) Voltage	(b) Intermediate va	alues (c) Input v	alues	(d) Clock	pulses	
3.	3. The truth table for an S-R flip-flop has how many VALID entries?						
	(a) 1	(b) 2	(c) 3		(d) 4		
4.		of a synchronous se	equential circuit can be pr	redicted by		CO1- U	
	(a) discrete instants of time (b) continuous instants of time						
	(c) sampling instants of time (d) at any instant of time						
5.	5. Which one of the following has capability to store data in extremely high densities?						
	(a) Register	(b) Capacitor	(c) Semiconductor	(d) Flip-I	Flop		
		PAI	$RT - B (5 \times 3 = 15 \text{ Marks})$)			
6.	Perform the f	10-	CO2- App				
7.	7. Compare encoder and decoder.						
8.	B. Distinguish between synchronous counter and asynchronous counter.						

How to differentiate fundamental mode from pulsed mode asynchronous 9. CO1-U sequential circuit. CO1-U 10. How many programmable gates are needed for PROM? $PART - C (5 \times 16 = 80 Marks)$ 11. (a) Find a minimal sum-of-products for the Boolean expression CO2-App (16) $f(w, x, y, z) = \sum m(1,2,3,7,8,9,10,11,14,15)$ using tabulation method. Or (b) Find a minimal sum-of-products for the Boolean expression CO2- App (16) $f(A, B, C, D) = \sum (1,3,4,5,9,10,11) + \sum \varphi(6,8)$ using the tabulation method. 12. (a) Design a 4-bit parallel adder/subtractor and explain the operation CO2-App (16)with a logic diagram. Or Implement the Boolean function using 8:1 multiplexer CO2- App (16) $f(A, B, C, D) = \sum m(1,3,4,11,12,13,14,15).$ 13. Design shift register counters using flip flops (a) CO2- App (16)Design PISO and PIPO shift register using D flip flop. (b) CO2- App (16)14. (a) Analyze fundamental mode with pulse mode circuits and justify it CO3-Ana (16)Design a serial binary adder using D flip flops and T flip flop for the CO3-Ana (b) (16)numbers 1011 and 0110 and also justify your answer. 15. (a) Analyze simplification of Boolean function using PROM, PLA and CO3-Ana (16)PAL. Or (b) Analyze the combinational circuit given below, using PLA and CO3-Ana (16)PAL. $F1(A,B,C) = \Sigma (0,1,2,4)$; $F2(A,B,C) = \Sigma (0,5,6,7)$.