С		Reg. No. :											
Question Paper Code: 95602													
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024													
Sixth Semester													
Electronics and Communication Engineering													
21UEC602 - VLSI DESIGN													
(Regulations 2021)													
Dura	ation: Three hours							Μ	laxin	num	: 100	Mai	cks
Answer ALL Questions													
PART A - $(5 \times 1 = 5 \text{Marks})$													
1.	In a verilog code, the n	nodule declara	ation cor	nsists o	f	_						CO	1 - U
	(a)Wire	(b) inputs		(c) g	ates				((d) I	/O p	orts	
2.	In the cutoff region of	the transistor	, the cur	rent flo	W							CO	1 - U
	(a) zero	(b) constant		(c) va	riable	e (a	l) No	one	of th	e abo	ove		
3.	To estimate the delay	of logic gates,	the anal	ytical 1	netho	d use	ed is					CO	1 - U
	(a) RC delay model	(b) π delay m	odel	(c) bc	oth (a)	& (1	b)	(d)	Non	e of	the a	ibove	2
4.	What is the delay requestructure?	ired to perforr	n a singl	e opera	ation i	in a p	oipel	ined	1			CO	1 - U
	(a) 2n	(b) 3n		(c) 4r	ı				((d) n			
5.	α is used for scaling											CO	1 - U
	(a) linear dimensions	(b) v _{dd}		(c) ox	ide th	nickn	ess		((d) n	on li	near	
PART - B (5 x 3 = 15 Marks)													
6.	List out the conditional statements in Verilog HDL.							CO1 -U					
7.	Compare N-MOS and P-MOS Transistor.							CO1- U					
8.	Define power dissipation.						CO1 – U						
9.	Design an AND gate using pass transistor.						CO3 - App						
10.	What is Low Power Logic Styles?						CO1 – U					J	

PART – C (5 x 16= 80Marks)

11.	(a)	Explain the VLSI design flow of Verilog HDL.	CO1 – U	(16)				
	(b)	Or Explain the design hierarchy of Verilog HDL with neat example.	CO1 – U	(16)				
12.	(a)	Design the OUT=(AB+CD)' using CMOS layout design rules. Or	CO3 –App	(16)				
	(b)	Draw the Stick diagram and layout diagram for 2 input NAND and 2 input NOR gate.	CO3 –App	(16)				
13.	(a)	Discuss the principle of constant field scaling and also write its effect on device characteristics.	CO1 – U	(16)				
	(b)	Discuss the different reliability problems related to the design of reliable chips.	CO1 – U	(16)				
14.	(a)	Explain the sequencing methods of sequential static circuits. Or	CO1 – U	(16)				
	(b)	Explain the concept of modified booth multiplier with suitable examples.	CO1 – U	(16)				
15.	(a)	Analyze the Different voltage scaling method using to design low power CMOS Circuits.	CO5 – Ana	(16)				
Or								

(b) Analyze different voltage scaling methods for low power design CO5 – Ana (16) influence of voltage scaling on power and delay.