С		Reg. No. :												
		Question I	Pape	er (Code	e: U	660	3						
	B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024													
	Sixth Semester													
	Electronics and Communication Engineering													
	21UEC603-IMAGE PROCESSING & ANALYSIS													
	(Regulations 2021)													
Dur	Duration: Three hours Maximum: 100 Marks													
	Answer ALL Questions													
		PART A	- (5	x 1 =	= 5 N	larks	5)							
1.	mimic the human visual system. CO1-U)1 - U							
	(a) Computer vision			(b) Co	mput	ter G	raph	ics					
	(c) Image processing			(d) Ima	age								
2.	The transformation is used to compress the dynamic CO1-U range of an image.)1-U								
	(a) Spatial frequency			(b) ima	nge T	rans	forn	ı					
	(c) Frequency			(d) His	togr	am							
3.	Canny edge detection	algorithm is bas	sed o	n									CO	1 - U
	(a) Ideal model	(b) step edge		(0	c) rea	al mo	odel		(d)) smo	oothi	ing n	node	1
4.	For the total number of test patterns, calculate	-		only	the	65 a	re co	rrec	tly re	ecogi	nized	l C	02-	App
	(a) 38.25	(b) 25.38		(0	c) 46	.38				((d) 3	8.46		
5.	Identify the kind of lease expressions".	arning algorithm	n for	"fac	ial id	entit	ies f	or fa	cial				CO	1 - U
	(a) Prediction				(b)	Reco	ognit	tion	patte	rns				
	(c) Recognizing anom	alies			(d)	Gen	erati	ng p	atteri	ns				
		PART –	B (5	x 3=	15 N	Mark	s)							
6.	Write the causes of vignetting effect and how can be avoided? CO1- U													
7.	. Describe watershed algorithm in region split an				nd me	erge.						C	CO1-	U

8. Compute the Local Binary Pattern calculation for a 3×3 pixel neighbourhood CO2-App given below:

90	200	140
180	172	100
170	181	152

- 9. Define curse of dimensionality and how it can be eliminated. CO1- U
- 10. Compare linear regression and decision trees. CO1- U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Derive the expression for the image formation process in various CO1- U (16) projections.

Or

- (b) (i) Given a 3D object with coordinate points A(0, 3, 3), B(3, 3, 6), CO1-U (16) C(3, 0, 1), D(0, 0, 0). Apply the scaling parameter 2 towards X axis, 3 towards Y axis and 3 towards Z axis and obtain the new coordinates of the object.
 (ii) Given a 3D triangle with coordinate points A(3, 4, 1), B(6, 4, 2), C(5, 6, 3). Apply the reflection on the XY plane and find out the new coordinates of the object.
- 12. (a) How finite sequence of equally-spaced samples of a function is CO2-App (16) converted into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform ?

Or

(b) Define Histogram equalization of an image.A 3-bit image of size CO2-App (16) 4×5 is shown below. Compute the histogram equalized image.

0	1	1	3	4
7	2	5	5	7
6	3	2	1	1
1	4	4	2	1

13. (a) Analyze the application of region splitting and merging algorithm CO4-App (16) and analyze the segmentation algorithm which was inspired from the field of hydrology and topography.

Or

(b) Compare and contrast LBP and LDP. Compute the Local Binary CO4-App (16) pattern texture descriptor for the 3 × 3 pixel neighbourhood given below:

3	5	7
2	6	4
3	8	12

14. (a) Analyze the pattern recognition problem and explain its various CO5-App (16) stages with neat diagram.

Or

- (b) Identify which method is suitable for processing the pixel data and CO5-App (16) image recognition and implement with suitable derivations.
- 15. (a) Consider an image containing one arbitrary object. Apply affine CO6-Ana (16) transformation for the following cases:
 - i. Shearing
 - ii. Scaling

Or

- (b) Consider an image containing one arbitrary object. Apply affine CO6-Ana (16) transformation for the following cases:
 - i) Shearing and ii) Scaling

U6603