4		4
4		•
٧	l	

Reg. No.:					

Question Paper Code: 96421

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Sixth Semester

Electronics and Electrical Engineering

19UEC621- Digital Signal Processing for Electrical Engineers

	1701	Digital bight	an i roccissing for Electrica	Engineers			
		(Re	egulation 2019)				
Dur	ation: Three hours			Maximum:	100 Marks		
		Answer	ALL Questions				
		PART A -	$(5 \times 1 = 5 \text{ Marks})$				
1.	. For the signal, $x(n)=\log(\cos(a\pi n+d))$ for a =50 Hz, What is the time period of the signal, if						
	(a) 0.14s	(b) 0.16s	(c) 0.12s	(d) 0.04s			
2.	The ROC of a caus	s r.	CO1-U				
	(a) interior	(b) exterior	(c) both a and b	(b) none	of these		
3.	Find the DFT of y($(n) = \{1,1,0,0\}$			CO3-App		
	(a) $y(n) = \{-2, 3-3i, 0\}$),3+3i}	(b) $y(n) = \{2, 1+i, 0\}$,1-i }			
	(c) $y(n) = \{2, 1-i, 0, 1\}$.+i}	(d) $y(n) = \{-2,3+3\}$	i,0,3-3i }			
4.	A direct partial-fra	ction expansion of the	e transfer function in Z lea	ads to	CO4- R		
	(a) The parallel for	m II structure	(b) The parallel for	m I structure			
	(c) Cascaded struc	eture	(d) None of the abo	ove			
5.		_	lows buffering of serial sa ally with an assistance of l	_	CO5- U		
	(a) Boot Loader	(b) HPI	(c) EMIF	(d) McBSl	P		
		PART – B	(5 x 3= 15 Marks)				
6.	Show that the di	iscrete time system	described by the input	t – Output	CO1- App		

relationship y[n] = n x(n) is linear.

7. Convolve of the following using z-Transform CO2- App

$$X(z) = 1 + 2z^{-1} + z^{-2}$$
 and $H(z) = 1 + z^{-1} + z^{-2}$

8. Convolute $x(n) = \{4,3,2,1\}$ and $h(n) = \{2,1,2,1\}$ using linear properties CO3- U

9. Define Gibbs Phenomenon. CO4- U

10. List out the latest DSP Processor series.

11. (a) Check whether the system is memory less, linear, causal, variance CO1- App (16) and stable?

(i)
$$y(n) = x(-n)$$

(ii)
$$y(n) = \log x(n)$$

Or

- (b) Check whether the given signal is an energy or power signal. CO1- App $x(t) = A \cos \omega t$; -T< t < T
- 12. (a) Compute the following $Z[\sin(n\pi/2)]$ and $Z[-5^n u(n)]$. CO2- App (16)

Or

- (b) Find $Z^{-1}[(3z^2)/(z^2+7z+10)]$. Using convolution method. CO2- App (16)
- 13. (a) Draw the neat butterfly diagram using FFT-DIT algorithm with CO3- App (16) Examples.

Or

- (b) Find IDFT for the sequence $x(n) = \{1,2+j,2,2-j,-2,2+j,2,2-j\}$ CO3- App using matrix method and direct method.
- 14. (a) Build an IIR filter using impulse invariance technique for the given CO4- App (16)

$$0.6 \le |H(w)| \le 1 \text{ for } 0 \le w \le 0.35\pi$$

$$\mid H(w)\mid \leq 0.1 \text{ for } 0.7\pi \leq w \leq \pi$$

Assume T = 1 sec. Realize this filter using direct form I and direct form II.

Or

(b) Design a butterworth digital IIR filter using Bilinear Transform CO4- App by taking T= 1 sec to satisfy the following specification (16)

$$0.6 \le |H(w)| \le 1 \text{ for } 0 \le w \le 0.35\pi$$

$$| H(w) | \le 0.1 \text{ for } 0.7\pi \le w \le \pi$$

- 15. (a) Explain the operation of TDM serial ports in P-DSPs CO5- U (16)
 - (b) What are the different buses of TMS 320 C54 processor? Give CO5-U their functions. (16)