4	r	7
٧	ı	

Reg. No.:					

Question Paper Code: 96401

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

Electronics and Communication Engineering

19UEC601- WIRELESS COMMUNICATION SYSTEMS

		(Regulatio	ns 2019)			
Duration: Three hours				Maximum: 100	O Marks	
		Answer ALL Q	Questions			
		PART A - (5 x 1	= 5 Marks)			
1.	Mobile Assisted Hand	doff (MAHO) provides			CO1-U	
	(a) Faster handoffs		(b) Suitability fo	r frequent hando	ffs	
	(c) MSC need not mo	onitor the signal strength	(d) All of the above			
2.	The angle at which no	o reflection occurs in the	medium of origin		CO1-U	
	(a) Brewster angle	(b) Phase Angle	(c) Path Angle	(d) All of t	the above	
3.	amplifies quantization at the su	the signal such that its bsequent ADC.	level is well adju	sted to the	CO1-U	
	(a) Amplifier	(b) Rectifier (c) (Op amp (d) Auto	omatic Gain Cont	rol	
4.	Diversity technique				CO1- U	
	(a) Provides significa	(b) Needs training overhead				
	(c) Both of the mention	oned	(d) None of the mentioned			
5.	The data speed of Blu	netooth is around			CO1- U	
	(a) 1Mbps	(b) 2Mbps	(c) 3 Mbps	(d) 5Mbps		
		$PART - B (5 \times 3 = $	= 15 Marks)			
6.	. Mention the significance of frequency reuse in cellular networks.				CO1- U	
7.	. List the factors influencing small scale fading				CO1- U	
8.	State the advantages of Offset-QPSK.				CO1-U	

CO1-U

9. Write the advantages of LMS algorithm

10. What are the main functions of cognitive radio?

(8)

(8)

PART – C (5 x 16= 80 Marks)

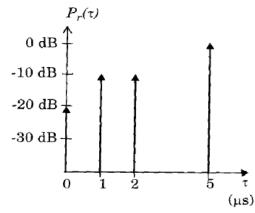
11. (a) Explain about cellular concept.

CO1- U (16)

Or

(b) Explain about noise and interference limited system

CO1- U (16)


12. (a) (i) Explain Flat fading and frequency selective fading in detail.

CO1-U (8)

(ii) In the US digital cellular system, if fc=900MHZ and the CO2-App mobile velocity is 70km/hr. Calculate the received carrier frequency if the mobile (a) directly toward the transmitter(Positive Doppler Shift (b) directly away from the transmitter(Negative Doppler shift) and (c) in a direction perpendicular to the direction of the arrival of the transmitted signal.

Or

(b) (i) Calculate the mean excess delay, rms delay spread and the CO2- App maximum excess delay (10dB) for the multipath profile given in the figure below. Estimate the 50% coherence BW of the channel. Would this channel be suitable for GSM service without the use of an Equalizer.

- (ii) Explain RMS delay spread, Maximum excess delay, Mean CO1-U (8) Excess delay and Coherence Bandwidth,
- 13. (a) What is QPSK? Derive the bit error probability of QPSK and CO1- U also explain the constellation diagram of it.

Or

(b) Explain Direct sequence Spread spectrum in detail

CO1- U

(16)

diversity techniques wireless CO1- U 14. (a) Explain space used in (16)communication. Or Explain the training A generic adaptive equalizer in detail. CO1- U (b) (16) 15. (a) What is cognitive radio in 5G? Explain in detail CO1- U (16) How does the Millimeter Wave Technology in 5G varies from CO1- Ana (16) (b) Microwave technology?