A		Reg. No. :												
Question Paper Code: R2M04														
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024														
Second Semester														
Electronics and communication Engineering														
R21UMA204- CALCULUS,COMPLEX ANALYSIS AND NUMERICAL METHODS														
(Regulations R2021)														
Dura	ation: Three hours								Max	kimu	m: 1	00 M	larks	
		Answe	er AL	LQ	uesti	ons								
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$														
1.	The complementary function of $(4D^2 - 3D - 1)y = 2 \sin 2x$ is CO6- U								6- U					
	(a) $Ae^{x} + Be^{-\frac{x}{4}}$	(b) $Ae^{-x} + Be^{5x}$		(c)	(A+	Bx)	e ^{2x}			(d) $Ae^{x}+Be^{4x}$				
2.	The complete solution of $(x^2D^2 - 3xD - 5)y = 0$ is											CO	6- U	
	(a) $Ae^{-z} + Be^{5z}$	(b) $Ae^z + B e^{5z}$		(c).	Ae ^z ·	+ B (e ^{-5z}			(d) .	Ae ^{-z}	+ B (e ^{-5z}	
3.	If \overline{F} is a conservative field, then \overline{F} is								CO6- U					
	(a) Solenoidal	(b) Irrotational		(c)	0					(d)]	None	e of t	hese	
4.	If V is the volume of the region enclosed by the cube $-1 < x, y, z <$ CO6- App 1 and $\vec{F} = x^2 \vec{i} + z \vec{j} + yz \vec{k}$, then $\iiint_V \nabla .\vec{F} dV =$													
	(a) 3	(b) 0		(c)	$\frac{3}{2}$					(d)	$\frac{1}{3}$			
5.	Find the fixed points of $f(z) = \frac{1}{z - 2i}$											CO	6- U	
	(a) i	(b) 2i		(c)	3i					(d)	0			
6.	The function $f(z) = \overline{z}$ is CO								6- U					
	(a) analytic except z=1			(b) analytic every where										
	(c) not analytic except z=0			(d) analytic except z=2										

7.	Simple pole is a pole of order						06- U		
	(a) 1	l	(b) 2	(c) 3	(d) 4				
8.	The		С	06- U					
	(a)	0	(b) $\pm n\pi$	(c) 1	(d) π				
9.	New	ton's method is a	also called method of			С	06- U		
	(a) t	angents	(b) slope	(c) secants	(d) false				
10.	Gau	ss Seidel method	converges faster than			С	06- U		
	(a) (Gauss Eliminatior	n (b) Gauss Jacobi	(c) Gauss Jordan	(d) Newto	on's			
			PART – B (5 2	x 2= 10 Marks)					
11.	. Solve						App		
	x ²	$\frac{d^2 y}{dx^2} - x \frac{d y}{dx} + y = 0$							
12.	Find the constant a,b,c so that $\vec{F} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ CO2 App is irrotational.								
13.	Sho		CO3	App					
14.	Obtain the poles of $\cot z$						App		
15.	• Using Power method find the dominant Eigen value of $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$						CO5 App		
			PART – C (S	5 x 16= 80 Marks)					
16.	(a)	(a) (i) Solve: $(x^2D^2 - xD + 4)y = x^2 \sin(\log x)$				App	(8)		
		(ii) Using method $(D^2 + a^2)y = ta$	CO1-	CO1- App					
	(b)	Or (b) (i) In a culture of bacteria the rate of increase is proportional t the number present. If it is found that the number doubles in hours how many may be expected at the end of 12 hours?				Арр	(8)		
		CO1	CO1- App						
17.	(a)	Verify Divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - xz)\vec{j} + (z^2 - xy)\vec{k}$ over the rectangular parallelepiped $x = 0$, $x = a$, $y = 0$, $y = b$, $z = 0$, $z = c$.				CO2- App (1			
			Or						

R2M04

- (b) (i) Prove that F = (x² + xy²)t + (y² + x²y)f is irrotational CO2- App (8) vector and find the Scalar potential such that F = ∇Ø.
 (ii) Using Green's theorem, find the value for CO2- App (8) ∫_C (3x² - 8y²) dx + (4y - 6xy) dywhere C is the boundary of the region defined by X = 0, Y = 0, X + Y = 1 in the XY plane.
- 18. (a) (i) Using Milne Thomson method, find the Analytic function CO3- App (8) given that $u + v = \frac{\sin 2x}{\cosh 2y \cos 2x}$

(ii) Find the image of |z - 3i| = 3 under the transformation $w = \frac{1}{z}$ (8)

Or

(b) (i) Using Milne Thomson method, find the Analytic function CO3- App (8) given that $u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$ (ii) Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$ CO3- App (8)

19. (a) (i) Expand
$$\frac{z-1}{(z+2)(z+3)}$$
 as Laurent's series valid in the region CO4- App (8)
 $2 < |z| < 3$
(ii) Evaluate using Cauchy's Residue theorem for CO4- App (8)
 $f(z) = \int_{c} \frac{3z^2 + z - 1}{(z^2 - 1)(z - 3)} dz$, where 'C' is the circle $|z| = 2$.
Or
 2π

(b) Using contour integration, Evaluate $\int_{0}^{2\pi} \frac{1}{5+4\sin\theta} d\theta$ CO4- App (16)

20. (a) (i) Solve the equation $e^x - 3x = 0$ by iteration method CO5- App (8) (ii) Solve 28x+4y-z = 32; x+3y+10z = 24; 2x+17y+4z = 35 by CO5- App (8) Gauss - Seidel method

Or

- (b) (i) Using Power method find numerically largest Eigen value of CO5- App (8) $\begin{pmatrix} 25 & 1 & 2 \end{pmatrix}$
 - 1 3 0
 - (2 0 4)

(ii) Solve 4x + 2y + z = 14, x + 5y - z = 10, x + y + 8z = 20 by CO5- App (8) Gauss Jordan method