Question Paper Code: U2M04

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

Electronics and communication Engineering

21UMA204- Calculus, Complex analysis and Numerical methods

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1. $\frac{1}{(D-m)^2}e^{mx} =$ _____ CO6-U

(c) $\frac{x^2}{2}e^{mx}$ (a)) xe^{mx} $(b)x^2e^{mx}$

 $(d) \frac{x^2}{} e^{mx}$

The complementary function of $(4D^2-3D-1)y=2 \sin 2x$ is _____ 2.

CO6-U

(a) $Ae^x + Be^{\frac{x}{4}}$

(b) $Ae^{-x}+Be^{5x}$ (c) $(A+Bx)e^{2x}$

(d) $Ae^x + Be^{4x}$

3. Div $\bar{r} = _{--}$

CO2-App

(a) 0

(b)1

(c)3

(d) \bar{r}

Divergence of vector $\mathbf{x}^2 \mathbf{i} + \mathbf{y}^2 \mathbf{j} + \mathbf{z}^2 \mathbf{k}$ at (1, 2, -3) is _____

CO2-App

(a) 8

(b)4

(d) 0

The critical point of the transformation $w = z + \frac{1}{z}$ are ____

CO₃- App

a) **±1**

b) ±2

c) $\pm i$

d) - i

6. The function $f(z) = \frac{1}{z^2+4}$ is not analytic at z =_____.

CO₃- App

(a) 2

b) -2

c)2i

 $d)\pm 2i$

7.	If $f(z)$ is analytic at all points inside and on a simple closed curve c ,					CO6-U	
	then	$\int_{C} f(z)dz =$					
	(a) 2	2πi	(b) -2πi	(c) 4πi	(d) 0		
8.	Simple pole is a pole of order					CO6-R	
	(a)	1	(d) 2	(c) 3	(d) 4		
9.	Iteration method converges if $ g^1(x) $					CO6-R	
	(a) >	>1	(b)<1	(c)=0	(d) > 0		
10.	Order of convergence of iteration method is					CO5-U	
	(a)	1	(d) 2	(c) 3	(d) 0		
			PART – E	3 (5 x 2= 10Marks)			
11.	Find Particular integral for $(\mathbf{D}^2 - 2\mathbf{D} + 1)\mathbf{y} = \mathbf{coshx}$.						
12.	Find $\nabla \varphi$, if $\varphi = x^2 + y^2 + z^2$ at $(1, -1, 1)$.				(CO2-App	
13.						СОЗ-Арр	
14.	Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is $ z = 2$				(CO4-App	
15.	State Newton's Iterative formula					CO5-R	
			PART -	- C (5 x 16= 80Marks)			
16.	(a)	_	l of variation of p	earameters solve $(D^2 + a^2)y =$	CO1-App	(8)	
	sec ax (ii) At the start of an experiment, there are 100 bacteria. If the bacteria follow an exponential growth pattern with rate $k = 0.02$. What will be the population after 5 hours? How long will it take for the population to double? Or					p (8)	
	(b)	(i) Solve: $(x^2D^2 - C)^2$	CO1- Ap	p (8)			
		(ii) Solve: $(D^2 -$	CO1- Ap	p (8)			
17.	(a)	•	arface of the cubo	for $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ id formed by the planes	CO2-App	(16)	

(b) Verify Green's theorem for
$$\int x^2 dx + xy dy$$
, where C is bounded by CO2 - App (16)
$$x = 0,$$

$$x = a, y = 0, y = a$$

- 18. (a) (i) Find the image of |z-3i|=3 under the transformation $w=\frac{1}{z}$ CO3-App (8)
 - (ii) If f(z) = u +iv is a regular function of z in a domain D the CO3-App following relation hold in D. $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$.

(i) Find the bilinear transformation from -i,0,i to -1,i,1. CO3-App

- (ii) Find the analytic functions f(z) = u + iv given that CO3-App (8) $2u + v = e^x(\cos y \sin y)$
- 19. (a) (i) Evaluate using Cauchy's Residue theorem for CO4-App (8) $f(z) = \int_{C} \frac{3z^2 + z 1}{(z^2 1)(z 3)} dz, \text{ where 'C' is the circle } |z| = 2.$
 - (ii) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for the region 1 < |z| < 3.

Or

- (b) Using contour integration, to find the value of $\int_{0}^{2\pi} \frac{d\theta}{13-5\cos\theta}$ CO4-App (16)
- 20. (a) (i) Solve for a positive root of $3x \cos x 1 = 0$ by Newton's CO5-App (8) Raphson method.
 - (ii) Solve 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 by CO5- App (8) Gauss Elimination method

Or

- (b) (i) Using Power method find numerically largest Eigen value of CO5- App $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ (8)
 - (ii) Solve by using convolution theorem Solve 28x+4y-z=32; CO5- App (8) x+3y+10z=24; 2x+17y+4z=35 by Gauss Seidel method

(8)