С		Reg. No. :													
	Question Paper Code: U4404														
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024															
		Fo	urth	Sem	ester										
	Electronics and Communication Engineering														
21UEC404-LINEAR INTEGRATED CIRCUITS															
	(Regulations 2021)														
Dur	ation: Three hours								Ma	xim	um:	100	Mar	ks	
Answer ALL Questions															
PART A - $(5 \times 1 = 5 \text{ Marks})$															
1.	Find the input bias current for the circuit given below CO2-Ap										App				
IB1 = 4mA $VolB$ $IB2 = 6mA$ $VolB$ $VolB$ $VolB$															
	(a) 10mA	(b) 5mA		(0	(c) 2mA						(d) 6mA				
2.	. Find the gain of the voltage to current converter with grounded load?										202-	App			
	(a) 2	(b) 1		(0	c) ∞					((d) 0				
3.	In a D-A converter with binary weighted resistor, a desired step size CO1-U can be obtained by														
	(a) Selecting proper value of V_{FS}					(b) Selecting proper value of R									
	(c) Selecting proper value of R _F				(d) All of the mentioned										
4.	The output of a particular Op-amp increases $8V$ in 12μ s. The slew rate is CO2										202-	App			
	(a) 90 v/µs	(b) $0.67 \text{ v/}\mu\text{s}$ (c) $1.5 \text{ v/}\mu\text{s}$ (d) 2.5						2.5 v	/µs						

5. Given the lower and higher cut-off frequency of a band-pass filter are CO1-U 2.5kHz and 10kHz. Determine its bandwidth.

(a)750 Hz (b)7500 Hz (c)75000 Hz (d)750kHz PART – B (5 x 3= 15Marks)

- 6. A differential amplifier has a differential voltage gain of 2000 and common CO2- App mode gain of 0.2. Determine CMRR in dB.
- Draw the output waveform of a clipper circuit with input signal amplitude of CO1-U 5V and reference voltage of +2V
- 8. Draw the output waveform of a clamper circuit with input signal amplitude of CO2-App 5V and reference voltage of +2V
- 9. If the analog signal Va is +4.129V .Find the equivalent digital number using CO1-U dual slope ADC.
- 10. What is the output of a 6 bit ladder D/A converter when it has an input of CO3-App 101001. For 1 = 10 V and 0 = 0V

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) Design a i) constant current source ii) Widlar current source for CO2- App (16) generating a constant current of Io=12 μ A.Assume Vcc=15V, Vbe=0.7 V, β =120, V_T=25mV.Find R1.

Or

- (b) (i) Design an op Amp with gain of -10 and input resistance CO2- App (8) equal to $10 \text{ k}\Omega$.
 - (ii) Design an op Amp with gain of + 5 and input resistance CO2- App (8) equal to $5 \text{ k}\Omega$.
- 12. (a) Design a circuit which is used in industry application to amplify CO2-App (16) the low input signal.

Or

- (b) Design the circuits which produce triangular and spike wave CO2-App (16) output for square input signal.
- 13. (a) Design an Amplifier circuit to measure the low input signal which CO2-App (16) is used in industrial and consumer applications.

Or

(b) Design the circuits which produce triangular and spike wave CO2-App (16) output for square input signal.

14. (a) Discuss in detail about the successive approximation ADC with CO1-U (16) neat diagram.

Or

- (b) Discuss in detail about the R-2R ladder type DAC with neat CO1-U (16) diagram.
- 15. (a) i) The basic step of a 9 bit DAC is 10.3 mV. If 000000000 CO3- App (16) represents 0V, find output is produced if the input is 101101111.
 ii) Calculate the values of the LSB, MSB and full scale output for an 8 bit DAC for the 0 to 10 V range.

Or

- (b) Find out the output voltage would be produced by DAC whose CO3-App (16) output range is 0 to 10 V and whose input binary number is
 - i) 10 (for a 2 bit DAC)
 - ii) 0110 (for a 4 bit DAC)
 - iii) 10111100 (for a 8 bit DAC)

U4404