A		Reg. No. :								
	Question Paper Code:U4M22									
	B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024									
	Fourth Semester									
		Electronics and C	ommunica	tion Eng	ineering					
	21UMA422 - PROBA	ABILITY STATIS	TICS AN	D MATH	EMATI	CAL STR	UCTUI	RES		
		(Reg	gulations 2	021)						
Dur	ation: Three hours					Maximu	m: 100	Marks		
		Answei	r ALL Que	estions						
		PART A -	(10 x 1 =	10 Marks	5)					
1.	If A and B are indep	endent events ther	$P(A \cap B)$	=				CO6- U		
	(b) P (A). P(B)	(c) $P(A) + P(B)$	(b) P (A)). P(B)		(c)	P(A) +	P(B)		
2.	The r th moment about	it origin is						CO6- U		
	(a) $\mu(X)$	(b) $\mu(X^2)$	(a) μ (X)		(d)	Х			
3.	Large sample size is							CO6- U		
	(a) 30	(b) >30	(c) <	< 30	(d) none of	the abo	ve		
4.	The degrees of freed	om for the sample	size n= 25	in Chi-s	quare tes	t is		CO6- U		
	·					(1)				
_	(a) (n -1)(n-2)		(c) n -3			(d)	n -1	~ ~ ~ ~ ~		
5.	SSE for one way des	-		~~~~~~		1) == 0.00		CO6- U		
-	(a) 0	(b) TSS-SSC					C-SSR			
6.	The degrees of freede classification is	om for the variatio	n due to e	ror term	in one w	ay		CO6- U		
	(a) N-1	(b) N-2	(c) (N-C)		(d)	C-1			
7.	If the Random Proce				ation fund	ction	С	O4- App		
	$R(\tau) = 16 + 9e^{- \tau } \text{The}$	en the Variance of	the proces	s is						
	(a) 16	(b) 25	(c) 6			(d)	9			

8. Given
$$R(\tau) = 25 + \frac{4}{1+6\tau^2}$$
 What is $E[X^2(t)]$?
(a) 25 (b) 29 (c) 26 (d) 27
9. $P \rightarrow \neg Q$ is equivalent to CO6- U
(a) $P \rightarrow \neg Q$ is equivalent to (c) $Q \rightarrow Q$ (c) $Q \rightarrow Q \rightarrow Q$ (

(a)
$$\neg P \land Q$$
 (b) $P \land \neg Q$ (c) $\neg (P \land Q)$ (d) $P \lor \neg Q$

10.
$$P \lor (P \rightarrow Q)$$
 is Equivalent to CO5- App
(a) Q (b) P (a) Q (b) P

$$PART - B (5 \times 2 = 10 \text{ Marks})$$

11. Using Probability mass function, Compute the mean value for the following CO1-App distribution.

Х	-2	-1	0	1
P(X)	0.4	0.1	0.2	0.3

- 12. A sample of size 10 has mean 58, standard deviation 18.4 and population CO2- Ana mean 50, Compute the calculated value of t' distribution
- For a one way classification on 12 observations involving 3 treatments the CO3- Ana sum of squares of treatment and sum of squares of total are 8 and 36 respectively, compute the value of the F ratio.
- 14. The power spectrum of a WSS process X (t) is given by $S_{xx} (\omega) = \frac{4}{4 + \omega^2}$ Find CO4 -App the autocorrelation.
- 15. Compute PCNF for $\neg (P \rightarrow Q)$

16. (a) (i) A Random Variable X has the following probability distribution CO1-App (8)

X=x	0	1	2	3	4	5	6	7	
P(X=x)	0	K	2 K	2 K	3 K	K^2	2 K 2	$7 K^{2} + K$	

Using probability mass function Compute the following

(i) 'K' (ii) P(X > 6), (iii) distribution function.
(ii) Using the probability mass function of Poisson distribution, CO1-App (8) Compute the moment generating function and hence find mean and variance

Or

(b) (i) State and Prove the memory less property for an Exponential CO1- App (8) distribution

CO₅- App

(ii) In a large consignment of electric bulbs 10 % are defective. A CO1 - App (8) random sample 20 bulbs are taken for inspection. Find the probability that (i) all are good bulbs (ii) exactly three defective bulbs

17. (a) (i) From the following two sample values, Identify the sampling CO2- Ana (8) distribution find, if the variances are significantly different.

Sample 1	5	6	8	1	12	4	3	9	6	10
Sample 1	2	3	6	8	10	1	2	8		

(ii) Two horses A and B were tested according to time (in seconds) CO2- Ana (8) to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Identify the sampling distribution, test whether horse A is running faster than B at 5% level.

Or

(b) (i) The theory predicts the population of beans in the four groups A, CO2- Ana (8)
B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

(ii) On the basis of information noted below, find out whether the CO2- Ana (8) new treatment is comparatively superior to the conventional one.Identify the sampling distribution.

	Favorable	Non-	Total
		Favorable	
conventional	40	70	110
New	60	30	90
Total	100	100	200

18. (a) The following table shows the lives in hours of four brands of CO3- Ana (16) electric lamps.

1610	1610	1650	1680	1700	1720	1800	
1580	1640	1640	1700	1750			
1460	1550	1600	1620	1640	1660	1740	1820
1510	1520	1530	1570	1600	1680		
	1580 1460	1580164014601550	158016401640146015501600	15801640164017001460155016001620	1580164016401700175014601550160016201640	15801640164017001750146015501600162016401660	

Perform an analysis of variance test the homogeneity of the mean lives of the four brands of lamps.

Or

(b) Analyze the following of Latin square design experiment,. CO3- Ana (16)

A (12)	D (20)	C (16)	B (10)
D (18)	A (14)	B (11)	C (14)
B (12)	C (15)	D (19)	A (13)
C (16)	B (11)	A (15)	D (20)

The letters A,B,C,D denote the treatments and the figures in brackets denote the observations,

19. (a) (i) If the auto correlation function of the random binary CO4- App (8) transmission is given by $R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \\ 0 & ; |\tau| \ge T \end{cases}$ Find the Power spectral density function.

> (ii) Using the properties of auto correlation function, compute the CO4-App (8) Mean, Mean Square value and Variance of $R_{xx}(\tau) = 25 + \frac{4}{1 + 6\tau^2}$

(b) (i) If the Power spectral density of a WSS processes is given by CO4- App (8) $S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|) & ; & |\omega| \le a \end{cases}$

$$(\omega) = \begin{cases} \mathbf{a} & |\mathbf{b}| \\ \mathbf{a} & \\ 0 & ; \\ |\mathbf{\omega}| > \mathbf{a} \end{cases}$$

Find the auto correlation function of the Process.

- (ii) Compute the power spectral density for the auto correlation CO4- App (8) function $R_{XX}(\tau) = e^{-\alpha \tau^2}$, $\alpha > 0$
- 20. (a) (i) Compute the PCNF and PDNF for $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ CO5- App (8)

(ii) Using rules of inference theory and CP Rule, CO5-App (8) derive $P \to (Q \to S), \neg R \lor P, Q \Rightarrow R \to S$

Or

(b) (i) Construct the truth table of ¬(P ∨ (Q ∧ R)) ↔ ((P ∨ Q) ∧ (P → R)) CO5- App (8)
(ii) Prove that following Premises inconsistent: CO5- App (8)
If the contract is valid then John is liable for penalty.
If John is liable for penalty then he will go bankrupt.
If Bank will loan him money then he will not go bankrupt.
As a matter of fact, The contract is valid and the bank will loan him money.

U4M22