	Reg. No	.:											
	Que	stior	1 Paj	per C	ode:	U44	109						
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024													
Fourth Semester													
Electronics and Communication Engineering													
21UEC409–SIGNALS AND LINEAR SYSTEMS													
(Regulations 2021)													
Du	ration: Three hours							Ma	xim	um:	100 1	Mark	(S
Answer ALL Questions													
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	A useful property of the unit impulse δ (t) is that											CO1	- U
	(a) δ (at) = a δ (t) (b) δ (at) = δ (t)												
	c) $\delta(at) = \frac{1}{\delta} \delta(t)$ (d) $\delta(at) = [\delta(t)]a$												
2.	Fourier transform of a Gaussian pulse is										CO	1 - U	
) Another Gaussian pulse (b) Squared Sinc pulse												
	(c) Sinc pulse	(d) Impulse train											
3.	Given that F(s) is a one sided L.T	. of f	c (t), th	e L.T. o	of∫ <i>f</i> (a	τ)dτi	S					CO	1 - U
	(a) s F(s)-f(0) (b) 1/s F(s) (c) $\int f(\tau) d\tau$							(d) $1/s[F(s)-f(0)]$					
4.	If the signal $x(t) = cos(2000\pi t)$ is sampled at 5000 Hz such that $x(n)=x(nT_s)$, what is the fundamental frequency of $x(n)$ in rad/sec?											CO4-	App
	(a) $2\pi/5$ (b) π		(c) 2π/8				(d)	π/8				
5.	Z[u(-n)] is										(204-	App
	(a) $-z/(z-1)$ (b) $1/z-1$		(c)	1/1 - z				(d) :	z/z-1				
	PA	RT –	B (5	x 3= 15	Marl	(s)							
6.	A given system is characterized for linearity and stability	by tł	ne dif	ferentia	l equa	ation;	Che	ck th	ne sy	stem	C	02-A	Арр

$$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} - 2 y(t) = x(t)$$

- 7. Using the properties, Determine the Fourier transform of $x(t) = t e^{-at}u(t)$ CO2-App
- 8. Write the equation for the complete response of a CT system in terms of state transition matrix.
- 9. What is aliasing? How it can be avoided? CO1-U
- 10. Identify all the possible regions of convergence of X(z) and sketch the plot CO4-App

$$X(z) = \frac{z(z-4)}{(z-1)(z-2)}$$

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

- 11. (a) Draw the wave forms represented by following step functions CO2- App (16) (i) $f_1(t) = 2 u(t - 1)$ (ii) $f_2(t) = -2u(t-2)$ (iii) $f(t) = f_1(t) + f_2(t)$ (iv) $f(t) = f_1(t) - f_2(t)$ Or
 - (b) Check all the system properties for the given (i) y(n) = x(n+1) - x(n-1)(ii) $\frac{dy(t)}{dt} + 5ty(t) = x(t)$ (16)
- 12. (a) Find the Fourier transform of a rectangular pulse of duration T CO3- App (16) with amplitude A and draw its spectrum.

Or

- (b) Obtain the Fourier Transform of the signal e^{-|t|} and plot its CO3- App (16) magnitude and phase spectrum.
- 13. (a) In the circuit shown below, the switch is in the closed position for CO5- Ana (16) a long time before it is opened at t=0. Find the inductor current i(t) for t ≥0.

a) Find the impulse response of the circuit using Laplace transform.

b) Analyze the performance of the circuit by comparing their stability, causality and linearity conditions.

- (b) Obtain the convolution of the given two signals using the CO5-Ana (16) convolution property of the Laplace transform and evaluate the results also with the conventional method of convolution. $x(t) = e^{-3t} u(t)$ and $y(t) = e^{-2t} u(t)$
- 14. (a) State and prove sampling theorem for low pass band limited signal CO1- U (16) and explain the process of reconstruction of the signal from its samples.
 - Or (b) State and prove the following properties of DTFT CO1- U (16) a) Time shifting b) Linearity c) Time scaling d) Convolution
- 15. (a) (i) State and prove any FIVE properties of z-transform. CO4- App (16)
 - (ii) Find the inverse Z-transform of $X(Z) = \frac{1}{1 az^{-1}}$; where the ROC |z| < |a|

Or

- (b) Determine the z-transform and plot the ROC of the following CO4- App (16) signals.
 - (i) $x(n) = a^n u(n)$
 - (ii) $x(n) = -b^n u(-n)$

Or