С		Reg. No. :											
	Question Paper Code: 94403												
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024													
	Fourth Semester												
	Electronics and Communication Engineering												
	19UEC403– SIGNALS AND SYSTEMS												
		(Regu	latio	on 20	19)								
Dur	ation: Three hours							Μ	axin	num:	100	Mar	ks
		Answer Al	LL Q	uest	ions								
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	A resistive-capacitive	network is a	system.						CO1-U				
	(a) causal & static	(b) Non causal & static											
	(c) causal &dynamic		(d) Non causal &dynamic										
2.	Which of the following signal can be analyzed by Fourier Transform?										CC)1-U	
	(a) Periodic (b)	aperiodic	(c) Bo	oth			(d) none of the at					oove
3.	2(<i>s</i>	+ 1)								CO3-App			
	If $F(s) = L[f(t)] = \overline{s^2 + 4s + 7}$ then the initial value of the signal is												
	(a) 0	(b) 2		(c) ¹	/2				(d) infinity				
4.	If the signal $x(t) = cos(2000\pi t)$ is sampled at 5000 Hz such that CO4- A $x(n)=x(nT_s)$, what is the fundamental frequency of $x(n)$ in rad/sec?										Арр		
	(a) 2π/5	(b) π		(c) 2	$\pi/8$				(d) π/8				
5.	The ROC $X(z)$ cannot	contain any						CO1-				1 - U	
	(a) poles	(b) zeros		(c) p	oles	or z	eros	((d) n	nultip	ole p	oles	
		PART – B (5	x 3=	= 15 1	Mark	s)							
6.	Relate the impulse signal, step signal and ramp signal.											CO	1 - U
7.	Obtain the Fourier Transform of $sin w_0 t$. Draw its magnitude spectrum							1	CO3- App				
8.	Derive the L.T. of the signal $u(t)^* u(t-1)$ using the convolution property							ty	CO3-App				
9.	State sampling Theorem.										CC)1- U	
10.	Define ROC. Illustrate the Z-transform pair.							CO1-U					

10. Define ROC. Illustrate the Z-transform pair.

C

PART – C (5 x 16= 80 Marks)

11. (a) Describe the properties of CT and DT systems in detail with neat CO1-U (16) sketch.

Or

(b) Check all the system properties for the given CO2- App (16)

(i) y(n) = x(n+1) - x(n-1)(ii) $\frac{dy(t)}{dt} + 5ty(t) = x(t)$

12. (a) Find the trigonometric Fourier series for the periodic signal x(t) CO3-App (16) shown in figure.

Or

- (b) Find the Fourier transform of a rectangular pulse of duration T CO2- App (16) with amplitude A and draw its spectrum
- 13. (a) An LTI system is defined by differential CO3- App (16) equation $\frac{d^2 y(t)}{dt^2} - 4 \frac{dy(t)}{dt} + 5 y(t) = 5 x(t)$. Find the response of the system y(t) using L.T. for an input x(t)=u(t), if the initial conditions are y(0)=1; y'(0)=2.

Or

- (b) Determine the Laplace Transform for double exponential function CO3- App (16) given by $x(t) = e^{-2|t|}$; also plot its region of convergence.
- 14. (a) A signal $x(t) = SinC(150\pi t)$ is sampled at a rate of a.100Hz b.200 CO4- Ana (16) Hz c.300 Hz. For each of these three cases, Explain if you can recover the signal x(t) from the sampled signal.

Or

- (b) A pressure gauge that can be modeled as an LTI system has a CO3- Ana (16) time response to a unit step input given by (1-e^{-t}-te^{-t})u(t). For a certain input x(t), the output is observed to be (2-3e^{-t}+e^{-3t})u(t). For this observed measurement, determine the true pressure input to gauge as a function of time.
- 15. (a) Realize the direct form I and direct form II structure for the given CO6- E (16) difference equation. Comment on the results obtained .

y(n) - 6y(n-1) + 6y(n-2) = x(n) + 3x(n-2).

(b) Consider an LTI system with impulse response CO5- Ana (16)

$$h[n] = \begin{cases} a^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

and input

$$x[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & otherwise \end{cases}$$

Determine the output y[n] by explicitly evaluating the discrete convolution of x[n] and h[n].