Reg. No. :

Question Paper Code: 94402

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Fourth Semester

Electronics and Communication Engineering

19UEC402- ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	For boundary between conductor and free space the field intensity inside a conductor is_				CO1-U
	(a) 1	(b) infinity	(c) Zero	(d) constant	
2.	Electromagnetic waves are produced by				CO1-U
	(a) static charge	(b) accelerated charge	(c) moving charge	(d) charged	particle
3.	When the load impedance is not equal to characteristic impedance of transmission line takes place.CO2-U				
	(a) Insertion	(b) Reflection	(c) both a and b	(d) None of	these
4.	The points of zero voltage or current in the standing waves is CO2- U				
	(a) Antinodes	(b) loops	(c) Nodes	(d) none	
5.	The velocity with which the energy propagates along a guide is called				CO2- U
	(a) Group velocity	(b) Phase velocity PAPT = P(5x)		(d) none of th	ese
6	$PART - B (5 \times 3 = 15 \text{ Marks})$				
6.	Write the four Maxwell equations in integral form.				CO1-U
7.	What is the Difference between displacement current and conduction current?				CO1-U
8.	Differentiate between Band pass and Band elimination filter				CO2-U
9.	Define standing Wave ratio				CO2-U
10.	What are guided waves? Give examples				CO2-U

C

$PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Derive the expression for the capacitance of a coaxial cable using CO3- App (16) Laplace's equation

Or

- (b) Solve the Laplace equation for the potential field in homogenous CO3- Ana (16) region between two concentric conducting spheres with radius a,b and V=V₀ at r=a and V=0 at r=b. Find the capacitance between concentric spheres.
- 12. (a) Derive the EM wave propagation parameters in Free space and CO2-App (16) also derive the expression for electric and magnetic field.

Or

- (b) Derive the Transmission and reflection coefficient of uniform CO2- App (16) plane waves
- 13. (a) Design a low pass filter for T and π section having cut off CO3- App (16) frequency 2 Khz to operative with a terminated load resistance of 500

Or

- (b) Design m-derived low pass filter having a cut off frequency of CO3- App (16) 5000Hz and design impedance of 600 ohms. The frequency of infinite attenuation is 1.25 fc
- 14. (a) A 70 Ω lossless used at a frequency where wavelength 80 cm CO5- Ana (16) terminated by load of 140 + j91 Ω . Find the reflection co-efficient VSWR and input impedance using smith chart
 - Or

(b) Derive the expression for single stub matching CO5- Ana (16)

15. (a) Determine the solution of electric and magnetic fields of TE CO6- Ana (16) waves guided along rectangular waveguide.

Or

(b) Derive the field equations for TM waves between parallel planes. CO6- Ana (16)