С		Reg. No. :									
Question Paper Code: 54405											
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024											
Fourth Semester											
Electronics and Communication Engineering											
15UEC405 - DIGITAL COMMUNICATION											
(Regulation 2015)											
Dura	Ouration: Three hours Maximum: 100 Marks										
Answer ALL Questions											
PART A - $(5 \times 1 = 5 \text{ Marks})$											
1.	The channel capacity	of mutual information	is					CO1- R			
	(a) C=supI(X;Y)	(b) $C=Blog(1+S/N)$	(c) $C=Bln(S/$	N)	(d) C	C=sup	B()	Κ:Y)			
2.	The maximum error correction of hamming code is.						CO2- R				
	(a) d≤k+1	(b) d≥2k+1	(c) d=k+1		(d)	none	of	these			
3.	Which type is used an	nd preferred in digital	ogic circuits					CO3- R			
	(a) NRZ-M	(b) NRZ-L	(c) Bipolar RZ			(d) R2	Z-A	MI			
4.	The matched filter presence of.	is a baseband signal	receiver, which	h work	s in			CO4- R			
	(a) Thermal noise	(b) white Gaussian r	oise (c) Pepp	er noise	e	(d) N	one	of these			
5.	The multiple symbol	ls are transmitted in on	e frequency hop	is calle	d as			CO5- R			
	(a) DSSS	DSSS (b) Frequency hopping									
	(c) Slow frequency hopping (d) Fast frequency hopping										
$PART - B (5 \times 3 = 15 \text{ Marks})$											
6.	Define Entropy							CO1- R			
7.	State the advantages of convolutional codes?							CO2- R			
8.	A signal is sampled at Nyquist rate of 6 KHz and is quantized using 8 bit uniform quantizer. Assuming SNR for a sinusoidal signal, calculate the bit rate, SNR and BW.						CO3- R				
9.	Why Non coherent d	letection is preferred of	ver Coherent de	tection?)			CO4- R			
10.	. Define processing gain and jamming margin						CO5- R				
PART – C (5 x 16= 80 Marks)											

11.	(a)	Apply Shannon-Fano encoding procedure to find the code word for the messages A1, A2, A3, A4 and A5 with respective probabilities 0.35, 0.25, 0.20, 0.15 and 0.05. Also find the redundancy of the code	CO1- App	(16)
	(b)	Use the LZW algorithm to compress the string BABAABAAA. Also comment on the code efficiency. Write the advantages of LZW coding over Huffman coding.	CO1- App	(16)
12.	(a)	For a systematic linear block code, the three parity check digits P1, P2,P3 are given by $P_{k,n-k} = [101\ 111\ 110\ 011]$ (i) Construct generated matrix. (ii) Assess the t code generated by the matrix. (iii) Determine error correcting capacity. (iv) Decode the received words with an example	CO2- App	(16)
	(b)	A convolutional code is described by g1=[1 0 0], g2=[1 0 1], g3=[1 1 1] (i) Build the encoder corresponding to the code. (ii) Develop the state transition diagram for this code. (iii) Draw the trellis diagram. (iv) Estimate the transfer function	CO2- App	(16)
13.	(a)	For the sequence 10111001, sketch the waveform supporting the following data formats. (i) Unipolar RZ (ii) Polar NRZ (iii) Alternate mark inversion (iv) Split Phase Manchester coding. Draw the corresponding spectrum of the above formats and explain. Or	CO3- U	(16)
	(b)	Outline the process of sampling and how the message can be reconstructed from its samples. Also illustrate the effect of	CO3- U	(16)

aliasing with neat sketch

14. (a) Discuss the transmitter, receiver and signal space diagram of CO4- Ana (16) QPSK and describe how it produces the original sequence with the minimum probability of error with neat sketch

Or

- (b) Summarize the transmitter, receiver and generation of non- CO4- Ana (16) coherent version of PSK with neat sketch and obtain the probability of error
- 15. (a) Discuss about the Direct Sequence Spread Spectrum Techniques CO5-U (16) with necessary diagrams and write its applications

(b) Explain the different types of synchronization techniques with CO5-U (16) necessary diagrams.

Or