С		Reg. No. :											
	Question Paper Code: 54402												
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024 Fourth Semester Electronics and Communication Engineering 15UEC402–ANALOG CIRCUITS (Regulation 2015)													
Duration: Three hours Maximum: 100 Marks Answer ALL Questions Maximum: 100 Marks													
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	Which of the follo frequencies in the rang (a) RC phase shift	ge of Mega Hertz?							•	oth (a) ar		1- R)
2.	Clock for binary logic	Clock for binary logic signals are generated using Multivibrator. CO2- I								2- R			
	(a) Monostable	(b) Univibrator) Univibrator (c) Bistable (d) Astable										
3.	Most of the linear Ic's are based on the two-transistor differentialCO3- Ramplifier because of its(a) Input voltage-dependent linear transfer characteristics									3- R			
	(b) High voltage gain												
	(c) High input resistance(d) High CMRR												
4.	Instrument is used to amplify output signal of transducer. CO4- R								4- R				
	(a) Integrator (b) D	a) Integrator (b) Differential amplifier (c) PLL (d) Instrumenta					itatio	tion amplifier					
5.	The most commonly u	he most commonly used amplifier in sample and hold circuit is						CO	5- R				
	(a) A unity gain non-in	nverting amplifier											
	(b) A unity gain invert	ting amplifier											
	(c) An inverting amplifier with a gain of 10												
	(d)An inverting ampli	fier with a gain of 10	00										

PART – B (5 x 3=15 Marks)

		I A K I = D (J X J = I J WIalks)							
6.	What is the condition for Barkhausen criterion in oscillator.(.								
7.	Define Rise time and storage time of Speed Up capacitor with expression.								
8.	List the advantages of integrated circuit (IC) over discrete component circuit.								
9.	Examine why integrators are preferred over differentiators in analog computer								
10.	List the important specifications parameters of D/A and A/D converters								
		PART – C (5 x 16= 80 Marks)							
11.	(a)	Explain the operation of Hartley oscillator and derive an equation for frequency of oscillation with neat and necessary diagrams	CO1- U	(16)					
Or									
	(b)	(i) Derive an expression for frequency of tuned oscillator and explain its operation with neat sketch	CO1- App	(10)					
		(ii) Explain the principles of LC oscillator with neat diagrams	CO1- U	(6)					
12.	(a)	What is clipper and clamper circuit and list their types also explain the working principle of any one type from each with neat circuit diagram and waveforms.	CO2- U	(16)					
	(b)	Or With the neat circuit diagram and waveforms, Explain the operation of a Monostable multi-vibrator and derive the expression for the pulse width	CO2- App	(16)					
13.	(a)	Explain the general construction and manufacturing process of monolithic ICs with necessary diagrams.	CO3- U	(16)					
	(b)	Or How external frequency compensation and internal frequency compensation reduce the bandwidth of the op-amp purposely? Justify with suitable explanation and sketch.	CO3- U	(16)					
14.	(a)	(i) Explain the construction and operation of an Instrumentation amplifier	CO4- App	(10)					
		(ii) Write the use of peak detector and explain the working ofPeak detector with neat circuit and waveforms.	CO4- U	(6)					
		Or							

- (b) (i) Design a fourth order Butterworth low-pass filter having upper CO4- App (8) cut-off frequency 1 kHz
 (ii) With neat circuit and block diagram explain the operation of CO4- U (8) basic Phase Locked Loop.
- 15. (a) Explain the working principle of following basic D/A converter CO5-U (16) techniques,
 - (i) Weighted Resistor type
 - (ii) R-2R Ladder type

Or

(b) Explain the working principle and operation of any two CO5-U (16) applications of Astable multi-vibrator using IC 555 timer