С	R	eg. No. :													
	Question Paper Code: U5401														
	B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024														
Fifth Semester															
	Electronics and Communication Engineering														
	21UEC501 - DIGITAL SIGNAL PROCESSING														
	(Regulations 2021)														
Dura	uration: Three hours Maximum:									100	Mar	ks			
Answer ALL Questions															
PART A - $(5 \times 1 = 5 \text{ Marks})$															
1.	What is the circular convolution of the sequences $x1(n)=\{2,1,2,1\}$ and CO2-App $x2(n)=\{1,2,3,4\}$?											vpp			
	(a) {14,14,16,16} (b) {16,16,14	1,14}	((a) {]	14,14	1,16,	16}		(b)) {16	5,16,	14,14	4}	
2.	The poles of Butterworth filter lies						plan	e	CO1-U					-U	
	(a) Sphere (b) Circle (c) Ellipse										(d) Parabola				
3.	What is the value of α if the number of samples N=15 CO2-App													vpp	
	(a) 15 (b) 15/2 (c) 14 (d										(d)	7			
4.	In Quantization to b-bits(excluding sign bit), if R is the range, then quantization step size q is CO1-U												-U		
	(a) $R/2^{b}$ (b) $R/2^{b+1}$ (c) $R/2^{b-1}$									(d) R 2 $^{b+1}$					
5.	The MMRs of TMS320C5x processor can be directly addressed by,											CO1	-U		
	a) 7-bit address (b) 8-bit address (c) 9-bit address (d) 11-bit address								S						
$PART - B (5 \times 3 = 15 \text{ Marks})$															
6.	Compute the N-point DFT of the signal $x(n) = cos(n\pi/4)$ for $0 \le n \le 3$. CO2-App														
7.	Given that, $H(s)=1/(s+1)$. By impulse invariant method, obtain the digital filter transfer function. CO2-App												pp		
8.	The frequency response of a digital filter is, H($e^{j\omega}$) =(0.7+0.6 cos ω -0.9cos ² ω) $e^{-j7.5\omega}$. Determine the phase delay and group delay.										CO	CO2-App			
9.	Compute the dead band for the equation $y(n) = 0.95y(n-1) + x(n)$. When the product is rounded off to 5-bits by rounding.										CO)2-A	rbb		
10.	Compare Harvard architecture and Von-Neumann architecture.											CO	01 - U	ſ	

11. (a) For the given sequences $x(n) = \{1,2,3,4\}$ & $h(n) = \{1,3,5\}$, CO2-App (16) find the output sequence y(n) by using linear convolution and circular convolution

- (b) For the given sequences x(n) ={1,-2,0,3} & h(n) ={1,-1,2}, CO2-App (16) find the output sequence y(n) by using linear convolution and circular convolution
- 12. (a) Use the Bilinear transformation to convert the analog filter CO4-App (16) with system function H(S) = s+0.1/(s+0.1)2+9 into a digital IIR filters. Select T=0.1s and compare the location of the zeros in H(Z) with the locations of the zeros obtained by applying the impulse invariant method in the conversion.

Or

- (b) Design a Chebyshev filter with a maximum pass band CO4-App (16) attenuation of 2.5db at $\Omega p=20$ rad/sec and stop band attenuation of 30db at $\Omega s=50$ rad/sec. (Analog Type-1 filter)
- 13. (a) Design a linear phase FIR Low pass filter using rectangular CO3-Ana (16) window with cut off $\omega c = 0.2 \pi$ rad/sample by taking N=7 samples.

Or

- (b) Design a band pass filter using frequency sampling method CO3-Ana (16) for the specifications,
 Sampling frequency F= 8000Hz
 Cutoff frequency fc1 =1000 Hz
 fc2=3000 Hz
 Determine the filter coefficients for N=7. If N=5 what will be the filter coefficients?
- 14. (a) Explain the characteristics of limit cycle oscillation with CO2-App (16) respect to the system described by the difference equation: y(n) = 0.95 y(n-1) + x (n). Determine the dead band of the system when x(n)=0.875 for n=0, 0 for n≠0
 - Or
 - (b) Explain the characteristics of a limit cycle oscillation with CO2-App (16) respect to the system described by the difference equation y(n) = 0.75 y(n-1) + x(n) assume b=5 (including sign bit) Determine the dead band of the filter.

15. (a) With a neat functional block diagram, outline the architecture CO1-U (16) of TMS320C5X processor in detail.

Or

(b) List the addressing modes of TMS320C5X processor with CO1-U (16) relevant examples.

U5401