С		Reg. No. :											
Question Paper Code: 55401													
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024													
	Fifth Semester												
	Electronics and Communication Engineering												
15UEC501 - DIGITAL SIGNAL PROCESSING													
(Regulation 2015)													
Dura	Duration: Three hours Maximum: 100 Marks												
	Answer ALL Questions												
	PART A - $(5 \times 1 = 5 \text{ Marks})$												
1.	DTFT is the representation of							CO	1 - R				
	(a) Periodic Discrete tin	ne signals		(b) A	Aperi	odic	Disc	erete	time	e sigi	nals		
	(c) Aperiodic continuou	s signals		(d) F	erio	dic c	ontin	nuou	s sig	nals			
2.	How to define IIR filter	s term as infinite:										CO	02-R
(a) As with any feedback device, create a loop, hence the term infinite.													
	(b) As with any non-feedback device, create a loop, hence the term infinite.												
(c) As with any feedback device, create a open loop, hence the term infinite.													
	(d) None of above												
3.	FIR filters											CO	93-R
	(a) are non-recursive	(b) do not adopt any feedback											
	(c) are recursive (d) use feedback												
4.	What is scaling?											CO	94-R
	(a) Scaling must be done in such a way that no overflow occurs at the summing point												
(b) Scaling must be done in such a way that overflow occurs at the summing point													
	(c) Scaling must be done in such a way that no underflow occurs at the summing point.												
	(d) None of above												

5.	The	function of exponent encoder in TMS320C54x is	CO5-App				
	(a) t	o extract the exponent to form floating point data					
	(b) to add the exponent from floating point data						
	(c) t	(c) to normalize the exponent of floating point data					
	(d) t	(d) to add/extract the exponent of floating point data					
		$PART - B (5 \times 3 = 15 \text{ Marks})$					
6.	List	List the properties of DFT and explain. CO1-U					
7.	Wh	at is bilinear transformation?	CO2- R				
8.	Hov	v to design a FIR filter using frequency-sampling method?	CO3- R				
9.	Wha	at is meant by zero limit cycle oscillations?	CO4- U				
10.	Wha	at is meant by pipelining?	CO5- R				
		PART – C (5 x 16= 80Marks)					
11.	(a)	Compute the 8-point DFT of the following sequence $x[n] = \{ 1,-1,1,-1,0,0,0,0 \}$ using Decimation in Time FFT algorithm.	CO1- App	(16)			
	(b)	Or Find	CO1- App	(16)			
	(b)	y(n)=x(n)*h(n) for the sequences x(n)= $\{1,2,-1,2,3,-2,-3,-1,1,1,1,2,-1\}$ and h(n)= $\{1,2\}$. compare the result by solving the problem using overlap save method and overlap add method.	COI- App	(10)			
12.	(a) Design a Butterworth Lowpass filter with T= 1 sec satisfying the following constraints using Bilinear transformation. $0.707 \le H(e^{j\omega} \le 1 \text{ for } 0 \le \omega \le \pi/2$ $ H(e^{j\omega} \le 0.2 \text{ for } 3\pi/4 \le \omega \le \pi$ Realize the filter using the most convenient realization form. Or		CO2- App	(16)			
	(b)	(i) For the analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$ Determine H (z) using impulse invariant method. Assume T=1sec	CO2- App	(8)			

(ii) Obtain the cascade and parallel realization for the system CO2- App (8) function given by

$$H(z) = \frac{1 + 0.25Z^{-1}}{(1 + 0.5Z^{-1})(1 + 0.5Z^{-1} + 0.25Z^{-2})}$$

13. (a) Design an FIR low pass filter of length 7 using Hamming window: CO3- App (16)
$$H(e^{j\omega}) = 1 \quad 0 \le |\omega| \le 0.5\pi$$
$$= 0 \quad 0.6\pi \le |\omega| \le \pi$$

Or

- (b) (i) State and explain the properties of FIR filters. State their CO3- App (8) importance.
 - (ii) Explain linear phase FIR structures. What are the advantages of CO3- App (8) such structures?

14. (a) Examine the limit cycle behavior of the system y(n)=0.7y(n-1) CO4- App (16) +x(n) and compute the dead band of the above system for the input

x(n) =	0.875	for n=0

=

- (b) Study the limit cycle behavior of the system CO4-App (16) y (n)=0.95y(n-1)+x(n),when the product is quantized by rounding and five bit sign-magnitude binary representation is used.
- 15. (a) (i) Describe the architecture of TMS320C6713 processor with CO5-U (8) suitable block diagram.
 (ii) Develop a program to implement DFT in 'C67x processor CO5-U (8) Or
 (b) (i) Explain about the instruction pipelining concept with diagram. CO5-U (8)
 - (ii) Explain the operation of TDM serial ports in P-DSPs.. CO5- U (8)

##