C	Reg. No. :										
---	------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 99409

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Elective

Electronics and Communication Engineering

19UEC909- IMAGE ANALYSIS AND VIDEO PROCESSING								
		(Regula	ations 2019)					
Dura	Ouration: Three hours Maximum: 100 Marks							
		Answer A	LL Questions					
	PART A - $(5 \times 1 = 5 \text{ Marks})$							
1.	1. Curvelets are technique for multi-scale object representation.							
	(a) adaptive	(b) non adaptive	(c) dynamic	(d) Varying				
2.	Which is a colour at	CO1- U						
	(a) Saturation	(b) Hue	(c) Brightness	(d) Intensity				
3.	Spam Classification	is an example for		CO1 -U				
	(a) Naive Bayes	L						
	(c) Random forest		(d) All the above					
4.	Digital video standa	rds is		CO1- U				
	(a) NTSC	(b) RGB	(c) YMCK	(d) JPEG				
5.	Hypothesis testing Estimation	g with Fixed/Adap	ptive thresholding Motion	CO1- U				
	(a) t - test	(b) $f - test$	(c) chi - square test	(d) z - test				
PART - B (5 x 3= 15Marks)								
6.	Specify the Proper	CO1- U						
7.	How the derivative	CO1- U						
8.	How to choose the	CO1 -U						
9.	Illustrate the purpo	CO1- U						
10.	State block matching algorithm based on its estimation strategy CO5- U							

 $PART - C (5 \times 16 = 80 Marks)$

11. (a) Describe the Fourier transform and discrete Fourier transform CO1- U and discuss the properties of Fourier transform. (16)

Or

(b) Explain the working of Weiner filter in image restoration.

CO1 -U

(16)

12. (a) Describe watershed segmentation algorithm and compare with region based approaches.

CO1 -U

(16)

Or

(b) Describe the region splitting and merging algorithm.

CO1 -U

(16)

(16)

(16)

13. (a) Consider the given dataset, Apply Naïve Baye's algorithm and CO2 -App predict that if a fruit has the following properties then which type of fruit it is.

Fruit = { Yellow, Sweet, Long}

Fruit	Yellow	Sweet	Long	Total
Mango	350	450	0	650
Banana	400	300	350	400
Others	50	100	50	150
Total	800	850	400	1200

Or

(b) Given the following training instances in below table, Each CO2 -App having two attributes (x and y). Compute the class label for test instance $t_1 = (3,7)$ using three nearest neighbors (k = 3)

<u>(</u>)	

Training instance(t ₁)	Х	у	Output (k)
A	7	7	0
В	7	4	0
С	3	4	1
D	1	4	1

14. (a) Analyze different type of video cameras related to NVR and CO4- Ana (16) DVR systems

Or

(b) Analyze the digital video standards by CCD sensors and CMOS CO4- Ana sensors. (16)

15. (a) Explain the motion detection algorithms for Hypothesis Testing CO1- U with Fixed Threshold and Adaptive Threshold. (16)

Or

(b) Discuss in detail about different algorithms used for block CO1-U (16) matching approaches.