С		Reg. No. :											
Question Paper Code: 99404													
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024													
Elective													
Electronics and Communication Engineering													
19UEC904- CONTROL ENGINEERING													
(Regulation 2019)													
Dura	Duration: Three hours Maximum: 100 Marks												ks
		Answer A	٩LL	Que	stion	S							
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	A control system in output is known as	which the control act	ion i	S SO1	nehc	ow d	epen	dent	on t	he			CO1-U
	a) Closed loop system (b) Open loop system												
	(c) Semi closed loop		(d) None the above										
2.	The damping ratio and peak overshoot are measures of:											(CO1- U
	(a) Relative stability	(b) Speed of respor	ise	(c)	Stea	dy si	tate e	error	((d) A	bsol	ute s	tability
3.	By equating the denominator of transfer function to zero, which among the CO1-U following will be obtained?												
	(a) Poles	(b) Zeros (c)	Both	a an	d	(d	l) No	one o	f the	abo	ve		
4.	For the polynomial $R(s) = s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15 = 0$ the number of roots which CO2- App lie in the right half of S plane is												
	(a) 4	(b) 3		(0	c) 2					(0	d)1		
5.	Which among the following plays a crucial role in determining the state of dynamic system?											CO5- U	
	(a) State variables	variables (b) State vector (c) State space (d)				d) St	State scalar						
PART - B (5 x 3 = 15 Marks)													
6.	Compare the Open lo	oop System with Close	ed lo	op S	yster	n.							CO1-U

7. The damping ratio and natural frequency of a second order system are 0.5 and 8 CO2- App rad/sec respectively. Calculate resonant peak and resonant frequency.

8.	Define Phase margin & gain margin.	CO1-U
9.	Brief the computation process of angle of departure.	CO2-U
10	Explain the concept of Controllability.	CO3-U

 $PART - C (5 \times 16 = 80 \text{ Marks})$

11 (a) Write the differential equation of the system and draw the force CO2-App (16)
voltage analogous circuits. Also derive the mathematical model of the mechanical system.

(b) Using block diagram reduction technique, Find the closed loop CO2-App (16) transfer function for the given system.

12 (a) Derive the response of under damped and critically damped second CO2-App (16). order system for unit step input.

Or

(b) An unit feedback system has G(s) = 1/s(1+2s). The input to the system CO2- App (16) is described byr(t)=2+4t+6t2+2t3. Determine the generalized error coefficients and express the steady state error as a function of time.

13 (a) Discuss briefly about the lag, lead and lag-lead compensators with CO5-U (16) examples.

Or

Or

- (b) Write down the procedure for designing lead compensators using CO5- U (16) Bode plot.
- 14 (a) Label the Root Locus of the system whose open loop transfer function CO4- Ana (16) $G(S) = \frac{K}{S(S+1)(S+3)}$. Determine the value of K for damping ratio equal to 0.5. Analyze the stability condition of the system for the damping ratio 0.5.
 - (b) The characteristic polynomial of a system is CO3- Ana (16) $s^{7} + 9s^{6} + 24s^{5} + 24s^{4} + 24s^{3} + 24s^{2} + 23s + 15 = 0$. Determine the location of roots on s-plane and hence the stability of the system.
- 15 (a) A system is represented by State equation X = AX + BU; Y = CX CO3- Ana (16)

where
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -10 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}_{and} C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Inspect the Transfer function of the System and analyze the state variables of the system.

Or

(b) Obtain the state model of the electrical network shown in figure by CO2- App (16) choosing V1(t) and V2(t) of state variables; also analyze the stability of the system.

