С		Reg. No. :									
Question Paper Code: 99402											
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024											
Elective											
Electronics and Communication Engineering											
19UEC902- PRINCPILES OF ROBOTICS											
(Regulation 2019)											
Dura	ation: Three hours						Maxin	num:	100	Marks	
Answer ALL Questions											
PART A - $(5 \times 1 = 5 \text{ Marks})$											
1.	If a robot has 3 legs, the	n the number of poss	sible ev	rents	is					CO1-U	
	(a) 24 ((d) 24 (b) 720 (c) 120 (d) 2						l) 240			
2.	The unit of linear accele	ration is								CO2- U	
	(a) kg-m (b) m/s	(c) 1	n/s2	d	(d) rad/	′s22			
3.	The inertia matrix of a rigid body or a link								CO3- U		
	(a) is always positive definite										
	(b)is always symmetric										
	(c)is an orthogonal matrix										
	(d) represents the mass of	listribution in 3D spa	ace								
4.	Gross motion planning problem is known a?									CO4- U	
	(a) Fine motion planning problem. (b) Free space motion plann						ning p	orob	lem.		
	(c) Compliant motion pl	(d) r	(d) none of the above.								
5.	What is necessity for a le	ot of sensible mobile	e robotics funaction CO5- U								
	(a) Map discovery (b) Geomatric Maps	(c) F	erce	ptul m	aps	(d)	Sense	orial	maps	
		PART - B (5 x)	3= 15]	Mark	(s)						
6.	What is meant by robot a	anatomy?								CO1 U	
7.	What is meant by unit Quaternion							CO2 U			
8.	Define Linear velocity.									CO5 U	

9.	Defi	ine path.	CO3 U								
10.	Mer	ntion the need of continuous Trajectory Recording	CO3 U								
PART – C (5 x 16= 80 Marks)											
11.	(a)	Explain the different types of robots with neat diagrams Or	CO1-U	(16)							
	(b)	Discuss about micro machines in robotics	CO1-U	(16)							
12.	(a)	Derive the Denavit- Hartenberg representation of forward kinematic equations of robots Or	CO2- App	(16)							
	(b)	Derive the direct kinematics equation of SCARA robot using D H transformation matrix.	CO2- App	(16)							
13.	(a)	Express the jacobian matrix for motion of end-effecter generated by a rotary joint and prismatic joint. Or	CO1-U	(16)							
	(b)	Explain the following: (i) Wrist and arm singularity (ii) Linear and Angular velocities	CO1-U	(16)							
14.	(a)	Implement interpolation function with the help of p-Degree polynomial and discuss its uses. Or	CO3- Ana	(16)							
	(b)	Express the time history of position velocity and acceleration for blended trajectory for point-to-point motion with via points.	CO3- Ana	(16)							
15.	(a)	Discuss in detail Methods of Robot programming with suitable example.	CO1-U	(16)							
	(b)	Explain in detail Robot program as a path in space with suitable example	CO1-U	(16)							