\mathbf{C}

9.

10. Explain about cross validation.

Reg. No. :					

Question Paper Code: 99401

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Elective

Electronics and Communication Engineering

		19UEC901- Princi	ples of Artificial Intellig	gence			
		(Re	gulation 2019)				
Dur	ation: Three hours			Maximum:	100 Marks		
		Answe	r ALL Questions				
		PART A	$- (5 \times 1 = 5 \text{ Marks})$				
1. General games involves			_		CO1- U		
	(a) Single-agent		(b) Multi-agent				
	(c) Neither Singl	e-agent nor Multi-age	ent (d) Only Single-	agent and Multi-ag	gent		
2.		lowing components of ting legal sentences in	of knowledge representation logic?	tion is	CO1- U		
	(a) Syntax	(b) Semantics	(c) Knowledge base	(d) Information I	Engine		
Which of the following search belongs to totally ordered plan search?				search?	CO1- U		
	(a) Forward state	e-space search	(b) Hill-climbing	(b) Hill-climbing search			
	(c) Depth-first se	earch	(d) Breadth-first	(d) Breadth-first search			
4.	. How many terms are required for building a bayes model?				CO1- U		
	(a) 1	(b) 2	(c) 3	(d) 4			
5.	What will take p	lace as the agent obse	rves its interactions with	the world?	CO1- U		
	(a) Learning	(b) Hearing	(c) Perceiving	(d) Speech			
		PART – I	3 (5 x 3= 15 Marks)				
6.	Define annealing	g and simulated annea	ling.		CO1- U		
7.	7. Define Semantics and Syntax?						
8.	. Write short notes on forward state space search?						

Write short notes on conditional independence in Bayesian network.

CO1- U

CO1-U

PART – C (5 x 16= 80Marks)

11.	(a)	Explain the concept of Greedy best-first search with an example.	CO2- App	(16)
		Or		
	(b)	Discuss about iterative improvement algorithms and the two major classes such as Hill-climbing and simulated annealing	CO2- App	(16)
12.	(a)	Illustrate the inference procedure of propositional resolution using refutation in conjunctive normal for first order logic knowledge base.	CO1- U	(16)
		Or		
	(b)	Explain in detail about knowledge base problem using first order logic representation.	CO1- U	(16)
13.	(a)	Explain about forward (progression) state space search with appropriate diagram.	CO1- U	(16)
		Or		
	(b)	Explain about backward (regression) state space search with appropriate diagram.	CO1- U	(16)
14.	(a)	Describe about inference by enumeration algorithm that are often applicable when exact inference is infeasible.	CO1- U	(16)
	(b)	Or Explain about the variable elimination algorithm and how it eliminates repeated calculations of enumeration algorithm.	CO1- U	(16)
15.	(a)	Explain about support vector machine learning approach. Or	CO1- U	(16)
	(b)	Describe the method of maximum-likelihood parameter learning.	CO1- U	(16)