

Question Paper Code: U6H51S

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

Computer Science and Engineering

21UGT651 - Comprehensive Engineering Aptitude Test

(Common to Information Technology)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(1 \times 30 = 30 \text{ Marks})$

MATHEMATICS

- 1. The general solution of the differential equation $\frac{dy}{dx} = \frac{1 + \cos 2y}{1 \cos 2x}$ is
 - (a) tany-cotx = c (b) tanx-coty = c (c) tany+cotx = c (d) tanx+coty = c
- 2. If two fair coins are flipped and at least one of the outcomes is known to be a head, what is the probability that both outcomes are heads?

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{1}{4}$

3. The solution of differential equation $\frac{dy}{dx} = ky$ and y(0) = c is

(a) $x = ce^{ky}$ (b) $x = ke^{cy}$ (c) $y = ce^{kx}$ (d) $y = ce^{-kx}$

4.

If a fair coin is tossed four times, what is the probability that two heads and two tails will result?

(a) $\frac{5}{8}$ (b) $\frac{3}{8}$ (c) $\frac{3}{4}$ (d) $\frac{6}{8}$

5. For a Group G = {1,-1,-i,i} under multiplication, which element(s) have self-reciprocal inverse(s)

(a) 1,i (b)
$$i,-i$$
 (c) 1, -1 (d) $i,-i$

6. The truth value "If 91 is prime then 25 is odd", The truth value "sin135° = 1 and 3 is a positive integer "
(a) T,F
(b) F,T
(c) T,T
(d) F,F

7. For a Group (Z,*), * is defined by a*b=a+b+2ab then identity element is (a) 0 (b)2 (c) -1 (d) 0 and 1

	COMPUTER SCIENCE ENGINE	ERING /INFORMATION TECHNOLOGY
8.	Consider a 50 kbps satellite channel with the sender wants to transmit 1000 bit for receive the frame?	ith a 500 milliseconds round trip propagation delay. If frames, how much time will it take for the receiver to
	(a) 250 milliseconds	(b) 20 milliseconds
	(c) 520 milliseconds	(d) 270 milliseconds
9.	Type checking is normally done during	
	(a) Lexical analysis	(b) Syntax analysis
	(c) Syntax directed translation	(d) Code optimization
10.	 Which one of the following statements for creating an index of a relational data (a) B+ Tree is a height-balanced tree (b) Non-leaf nodes have pointers to data (c) Key values in each node are kept in (d) Each leaf node has a pointer to the n 	a records sorted order text leaf node
11.	. Which one of the following is NOT a p (a) Atomicity (b) Consistency	art of the ACID properties of database transactions?(c) Isolation(d) Deadlock-freedom
12.	 What is the optimized version of the where A1, A2 are sets of attributes in based on the attributes in r? (a) πA1(σ(F1ΛF2)(r)) (c) πA2(σ(F1ΛF2)(r)) 	relation algebra expression $\pi A1(\pi A2(\sigma F1(\sigma F2(r))))$, r with A1 \subset A2 and F1, F2 are Boolean expressions (b) $\pi A1(\sigma(F1\vee F2)(r))$ (d) $\pi A2(\sigma(F1\vee F2)(r))$
13.	 In the following pairs of OSI the INCORRECT pair is (a) Network layer and Routing 	protocol layer/sub-layer and its functionality,

- (b) Data Link Layer and Bit synchronization
- (c) Transport layer and End-to-end process communication
- (d) Medium Access Control sub-layer and Channel sharing

14. If there are nn devices (nodes) in a network, what is the number of cable links required for a fully connected mesh and a star topology respectively (a) n(n-1)/2, n-1(b)n, n-1 (c) n-1, n (d) n-1, n(n-1)/2

15. The essential content(s) in each entry of a page table is/are (a) Virtual page number (b)Page frame number

(c) Both virtual page number and page frame number (d) access right information

16. Let S and T be language over ={a,b} represented by the regular expressions $(a+b^*)^*$ and (a+b)*, respectively. Which of the following is true? (b)TcS (T is a subset of S (a) ScT (S is a subset of T) (c) S=T(d) $SnT=\emptyset$

U6H51S

17.	Let P be a regular language and Q be context-free language such that $Q \subseteq P$. (For example, let P be the language represented by the regular expression p^*q^* and Q be $\{p^nq^n n\in N\}$). Then which of the following is ALWAYS regular?			
	(a) $P \cap Q$	(b)P - Q	(c) $\sum^* - P$	(d) $\sum^{*} - Q$
18.	A computer has a bytes. The process	256 KB, 4-way set sor sends 32 bit add	associative, write back data cache lresses to the cache controller. Each	with block size of 32 ch cache tag directory
	entry contains in a	ddition to address ta	ng, 2 valid bits, 1 modified bit and	l replacement bit.
	The number of bit (a) 11	s in the tag field of a $(b)14$	an address is-	(d) 27
19	(a) 11 The amount of RC	M needed to implet	ment a 4 bit multiplier is $\frac{1}{2}$	(u) 21
17.	(a) 64 bits	(b) 128 bits	(c) 1 Kbits	(d) 2 Kbits
20.	The smallest integ	er than can be repre	sented by an 8-bit number in 2's co	omplement form is
	(a) -256	(b) -128	(c) -127	(d) 0
21.	The result evaluation	ing the postfix expre	ession 105+60 6/*8– is	
	(a) 284	(b) 213	(c) 142	(d) 71
22.	A function f defi	ned on stacks of in	tegers satisfies the following prop	perties. $f(\phi) = 0$ and f
	(push (S, i)) = ma	x(f(S), 0) + i for all	stacks S and integers i. If a stack	S contains the integers
	2, -3, 2, -1, 2 in o	rder from bottom to	top, what is f(S)?	
	(a) 6	(b) 4	(c) 3	(d) 2
23.	The output Y of a	2-bit comparator is	logic 1 whenever the 2-bit input A	A is greater than the 2-
	bit input B. The nu	umber of combination	ons for which the output is logic 1,	is
	(a) 4	(b) 6	(c) 8	(d) 10
24.	To implement Dijkstra's shortest path algorithm on unweighted graphs so that it runs in linea			
	time, the data strue	cture to be used is:		
~ ~	(a) Queue.	(b) Stack.	(c) Heap.	(d) B-Tree.
25.	25. The Floyd-Warshall algorithm for all-pair shortest paths computation is based on(a) Greedy paradigm.			based on
	(b) Divide- and- co	onquer paradigm.		
	(c) Dynamic progr			
	(d) Neither Greed	y nor Divide- and- c	onquer nor Dynamic programming	, paradigm.
26		GE	ENERAL APTITUDE	
20.	Find the number o	of triangles in the give	/en figure.	
	\mathbb{A}			
	(a)16	(b) 13	(c) 9	(d) 7
27.	The price of an i	tem is increased by	y 20% and then decreased by 20%	%. The final price as
	compared to original price is:			
	(a) 20% less	(b) 20% more	(c) 4% more	(d) 4% less

U6H51S

28.	The Last day of C	entury cannot be			
	(a) Monday	(b) Tuesday	(c) Wednesday	(d) Friday	
29.	29. What is the probability that a leap year selected at random will contain 53 Sundays?				
	(a) 2/7	(b) 3/7	(c) 4/7	(d) 5/7	
30	If a person walks at 14 km/hr instead of 10 km/hr, he would have walked 20 km more actual distance travelled by him is:				
	(a) 50 km	(b) 56 km	(c)70 km	(d)80 km	
		PART	B - (35 x 2 = 70 Marks)		
]	MATHEMATICS		
31	For the matrix $\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$, the eigen values are				
	(a) 3 and -3	(b) -3 and -5	(c)3 and 5	(d)5 and 0	
32	The inverse of $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 2\\7 \end{pmatrix}$ is			
	$(a)\frac{1}{3}\begin{pmatrix} -7 & 2\\ 5 & -1 \end{pmatrix}$	$(b)\frac{1}{3}\begin{pmatrix}7&2\\5&1\end{pmatrix}$	(c) $\frac{1}{3} \begin{pmatrix} 7 & -2 \\ -5 & 1 \end{pmatrix}$	(d) $\frac{1}{3} \begin{pmatrix} 7 & -2 \\ -5 & -1 \end{pmatrix}$	
33	Find the value of $\int_{0}^{3} \sqrt{(3+x)(3-x)} dx$				
	(a) $\frac{9\pi}{4}$	$(b)\frac{9\pi}{8}$	(c)9 π	(d)0	
	COMPUT	TER SCIENCE ENG	INEERING /INFORMATION TEC	CHNOLOGY	
34	Which of the follo	wing statements are	TRUE?		

I. There exist parsing algorithms for some programming languages whose complexities are less than $\theta(n3)$.

II. A programming language which allows recursion can be implemented with static storage allocation.

III. No L-attributed definition can be evaluated in the framework of bottom-up parsing.

IV. Code improving transformations can be performed at both source language and intermediate code level.

(a) I and II (b) I and IV (c) III and IV (d) I, III and IV

35 An LALR(1) parser for a grammar G can have shift-reduce (S-R) conflicts if and only if

(a) the SLR(1) parser for G has S-R conflicts

(b) the LR(1) parser for G has S-R conflicts

- (c) the LR(0) parser for G has S-R conflicts
- (d) the LALR(1) parser for G has reduce-reduce conflicts

36 Given the following relation instance.

	X Y Z			
	1 4 2			
	1 5 3			
	1 6 3			
	3 2 2			
	Which of the following functional dependencies are satisfied by the instance?			
	(a) $XY \rightarrow Z$ and $Z \rightarrow Y$ (b) $YZ \rightarrow X$ and $Y \rightarrow Z$			
	(c) $YZ \rightarrow X$ and $X \rightarrow Z$ (d) $XZ \rightarrow Y$ and $Y \rightarrow X$			
37	In SQL, relations can contain null values, and comparisons with null values are treated as			
	unknown. Suppose all comparisons with a null value are treated as false. Which of the			
	following pairs is not equivalent?			
	(a) $x = 5$, not (not (x = 5) (b) $x = 5$, $x > 4$ and $x < 6$, where x is an integer			
	(c) $x < 5$, not($x = 5$) (d) None of the above			
38	The protocol data unit(PDU) for the application layer in the Internet stack is			
	(a)Segment (b)Datagram (c)Message (d) Frame			
39	In the IPv4 addressing format, the number of networks allowed under Class C addresses is			
	(a) 2^{14} (b) 2^{7} (c) 2^{21} (d) 2^{24}			
40	A virtual memory system uses First In First Out (FIFO) page replacement policy and			
	allocates a fixed number of frames to a process. Consider the following statements:			
	P: Increasing the number of page frames allocated to a			
	process sometimes increases the page fault rate.			
	Q: Some programs do not exhibit locality of reference.			
	Which one of the following is TRUE?			
	(a) Both P and Q are true, and Q is the reason for P (b) P is false, but Q is true			
	(c) Both P and Q are true, but Q is not the reason for P (d) Both P and Q are false			
41	Match all items in Group 1 with correct options from those given in Group 2.			
	Group 1 Group 2			
	P. Regular expression 1. Syntax analysis			
	Q. Pushdown automata 2. Code generation			
	R. Dataflow analysis 3. Lexical analysis			
	S. Register allocation 4. Code optimization			
	(a)P-4. Q-1, R-2, S-3 (b)P-3, Q-1, R-4, S-2 (b)P 2, Q-1, P 4, S-2 (b)P			
40	(c)P-3, Q-4, R-1, S-2 (d)P-2, Q-1, R-4, S-3			
42	which of the following languages is/are regular? L_{1} (see B (see a c (a b) tend by back by a B is the second of string or			
	L_1 , www $ w, x \in \{a, b\}$ and $ w , x > 0\}$, w is the reverse of string w			
	$L_2: \{a^n b^m \mid m \neq n \text{ and } m, n \ge 0\}$			

 $L_3:\left\{a^pb^qc^r \mid p,q,r \ge 0\right\}$

	(a) L1 and	L3 only	(b) L1 only	
	(c) L2 and	L3only	(d) L3 only	
43	What is the	ne minimum number of	f states in deterministic fi	nite automata (DFA) for string
	starting w	ith ba ² and ending with	h 'a' over alphabet {a, b}	?
	(a)Ten	(b)Nine	(c)Eight	(d) Six
44	4 Identify the language generated by the following grammar, where S is the start variable.			
	S→XY			
	X→aX a			
	$Y \rightarrow aYb$	E		
	(a) { $a^m b^n$	$m \ge n, n > 0$	$(b)\{a^m b^n \mid m > n,\$	n > 0
	$(c){a^m b^n}$	$m > n, n \ge 0$	$(\mathbf{d})\{\mathbf{a}^{\mathbf{m}}\mathbf{b}^{\mathbf{n}} \mid \mathbf{m} \ge \mathbf{n},$	$n \ge 0$
45	The protoc	col data unit(PDU) for th	e application layer in the In	ternet stack is

(a) Segment (b) Datagram (c) Message (d) Frame

46 The output Y in the circuit below is always '1' when

(a)two or more of the inputs P, Q, R are '0'
(b)two or more of the inputs P, Q, R are '1'
(c)any odd number of the inputs P, Q, R is 0'
(d)any odd number of the inputs P, Q, R is 1'

47 Consider a hash table with 9 slots. The hash function is h(k) = k mod 9. The collisions are resolved by chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. The maximum, minimum, and average chain lengths in the hash table, respectively, are

(a)3, 0, and 1. (b) 3, 3, and 3. (c) 4, 0, and 1. (d) 3, 0, and 2.

- 48 Which of the following is/are valid statement(s) of the spanning tree of a connected undirected graph G (V,E)?
 - (a) Spanning Tree of G(V,E) must contain (V–1) number of edges.
 - (b) Spanning Tree of G(V,E) is minimally connected.
 - (c) Spanning Tree of G(V,E) is maximally cyclic.
 - (d) Spanning Tree of G(V,E) must contain (E–1) number of edges.
- 49 A CFG G is given with the following productions where S is the start symbol, A is a non-terminal and a and b are terminals. S→aS|AA→aAb|bAa|€ Which of the following strings is generated by the grammar above?
 (a) ashbaba

(a) aabbaba	(b) aabaaba	(c) abababb	(d) aabbaab.
-------------	-------------	-------------	--------------

- 50 Which of the following languages are undecidable? Note that (M) indicates encoding of the Turing machine M.
 - $L_1 = \{ \langle M \rangle | L(M) = \phi \} \{ \langle M \rangle | L(M) = \phi \}$
 - $L_2 = \{ \langle M, w, q \rangle | \{ \langle M, w, q \rangle | M \text{ on input } w \text{ reaches state } q \text{ in exactly 100 steps } \}$
 - $L_3 = \{ \langle M \rangle | \langle M \rangle | L(M) \text{ is not recursive } \}$
 - $L_4 = \{ \langle M \rangle | \langle M \rangle | L(M) \text{ contains at least } 21 \text{ members } \}$

(a)L2 and L3 only (b) L1 and L3 only (c) L2,L3 and L4 only (d) L1,L3 and L4 only 51 Consider the following statements.

- I. The complement of every Turing decidable language is Turing decidable II. There exists some language which is in NPNP but is not Turing decidable III. If LL is a language in NP,NP, LL is Turing decidable
- Which of the above statements is/are true?
- (a) Only I and II (b) Only I and III (c) Only II (d) Only III

Let N be an NFA with nn states. Let k be the number of states of a minimal DFAwhich is equivalent to N. Which one of the following is necessarily true?
(a)K<2ⁿ
(b) k<n²
(c) K>2ⁿ
(d) K>2ⁿ

53 Let L1 be a recursive language. Let L2 and L3 be languages that are recursively enumerable but not recursive. Which of the following statements is not necessarily true?
(a)L2-L1 is recursively enumerable
(b)L2∩L3 is recursively enumerable

- (c)L1 –L3 is Recursively enumerable (d)L2 \cup L3 is recursively enumerable
- 54 $S \rightarrow aSa|bSb|a|b$

The language generated by the above grammar over the alphabet {a,b} is the set of

- (a)All Palindromes (b)All odd length Palindromes
- (c)strings that begin and end with the same symbol (d)all even length palindromes.
- 55 All the routers use the distance vector based routing algorithm to update their routing tables. Each starts with its routing table initialized to contain an entry for each neighbour with the weight of the respective connecting link. After all the routing tables stabilize, how many links in the network will never be used for carrying any data?
 - (a) 4 (b) 3 (c) 2 (d) 1
- 56 Which of the following is decidable?
 - (a) A Turing machine prints specific letter
 - (b) A Turing machine computes product of two numbers.
 - (c) An arbitrary Turing machine halts after fifty steps
 - (d) none of the above.

57 In which of the cases stated below is the following statement true?

"For every non-deterministic machine M1M1 there exists an equivalent deterministic

machine M2M2 recognizing the same language".

- (a) M1 is nondeterministic finite automation
- (b) M1 is a nondeterministic PDA

	(c) M1 is a nondeterministic Turing machine			
	(d) For no machine M1 use the above statement true			
58	Context free langua	ages and regular lan	guages are both closed unde	r the operation(s) of :
	(a) Union		(b) Intersection	
	(c) Concatenation		(d) Complementation	
59	Which of the follow	wing regular express	tion identities are false?	
	(a) $(r+s)^* = r^* + s^*$	(b) $r^*s^* = r^* + s^*$	(c) $r^{*}=r^{*}+s$	(d) $(r*s*)*=(r+s)*$
60	Page fault occurs	when		
	(a) the page is corru	upted by application	Software	
	(b) the page is in m	ain memory		
	(c) the page is not i	n main memory		
	(d) the process requ	lesting the page doe	s not have privilege to acces	s the page
		GE	NERAL APTITUDE	
61	What was the day of	of the week on 28th	May, 2006?	
	(a) Sunday	(b) Tuesday	(c) Wednesday	(d) Friday
62	From the group of	5 men and 5 wome	en. Two persons are chosen	at random. The probability
	that one of them is man and the other woman is			
	(a) 2/5	(b) 3/5	(c) 5/9	(d) 4/9
63	A man is facing	North-West. He tu	rns 90° in the clockwise of	direction, then 180° in the
	anticlockwise dire	ction and then anot	ther 90° in the same direct	ion. Which direction is he
	facing now?			
	(a) South	(b) South - West	(c) South - East	(d) East
64	In a certain code, ¹²	247' means 'spread r	ed carpet'; '256' means 'dust	one carpet' and '234' means
	'one red carpet'. Which digit in that code means 'dust'?			
	(a) 2	(b) 3	(c) 5	(d) 6
65	60. 25 : 37 :: 49 : ?			
	(a) 65	(b) 69	(c) 79	(d) 81