A		Reg. No. :]
		Question Pape	er C	ode	e: 94	402 1	L						
	B.E./	B.Tech. DEGREE EX	XAM	IIN/	ATIO	N, N	IAY	202	4				
		Fourth	Sem	ester	ſ								
		Computer Science	ce an	d Er	ngine	ering	5						
	19U	MA421 - Transforms	and	Dis	screte	e Mat	them	atics	5				
		(Common to Infor	mati	on T	echn	olog	y)						
		(Regulat	ions	201	9)								
Dur	ation: Three hours							Max	kimu	m: 1	00 N	Marks	3
		Answer AI	LL Q	uest	ions								
		PART A - (10	x 1 =	= 10	Mar	ks)							
1.	The truth value "If 7	is prime then 2 is eve	en",	The	trutł	ı valı	ıe					CC)1-U
	" $1 > 3$ and 3 is a posi	tive integer "											
	(a) T,F	(b) F,T	(c) T	Т					(d) I	F,F		
2.	$\neg (P \rightarrow Q)$ is equivalent to									CC)1 - U		
	(a) $\neg P \land Q$	(b) $P \land \neg Q$	(c) ¬	$(P \land g)$	Q)				(d) <i>i</i>	$P \vee Q$	2	
3.	Calculate how many integers between 1 to 100 are divisible by 2 and 1							10	CO2-App				
	(a) 41	(b)16	(c)82						(d) 1	0		
4.	The particular integra	al of $a_n - 4a_{n-1} + 7a_n$	-2 =	12								CO2-	App
	(a) 4	(b)3	(c)7						(d) ()		
5.	A subgroup of the gro	oup $\{1, i, -i, 1\}$ where <i>i</i>	⁴ = 1	uno	der tl	ne mu	ultip	licati	ion		(203-	App
	(a) $\{1, i\}$	(b) $\{1, -i\}$	(c) {-	• <i>i</i> , <i>i</i> }			(d)	Non	e of	the	abov	e
6.	The order of the element [7] in a group (Z_8, \oplus_8)										(CO3-	App
	(a) 4	(b) 3	(c) 2				(d)	Non	None of the above			

7.	Fourier tra	CO4-App							
	(a) $\frac{\cos s}{s}$	(b) $\sqrt{2\pi} \frac{\cos s}{s}$	(c) $\sqrt{2\pi} \frac{\sin s}{s}$	(d) $\frac{2\sin s}{s}$					
8.	If $F[f(x)]$	С	06-U						
	(a) $aF\left(\frac{a}{s}\right)$	(b) $\frac{1}{a}F\left(\frac{s}{a}\right)$	(c) $aF\left(\frac{s}{a}\right)$	(d) $\frac{1}{a}F\left(\frac{a}{s}\right)$					
9.	The Z-tra	С	05-U						
	(a) e^{aZ}	(b) $e^{\frac{Z}{a}}$	(c) e^Z	(d) $e^{\frac{a}{Z}}$					
10.	The Z trans	CO5-U							
	(a) $\frac{z}{z-1}$	(b) $\frac{z}{z+4}$	$(c)\frac{4z}{z-1}$	(d) $\frac{4z}{z+1}$					
PART - B (5 x 2= 10 Marks)									
11.	Simplify th	CO1-App							
12.	Derive the	CO2-App							
13.	Define Mo	CO3-U							
14.	Define For	CO4-App							
15.	State Initia	CO5-R							
		PART – O	C (5 x 16= 80Marks)						
16.	(a) (i) Ca	CO1-App	(8)						
	(ii) Sł	CO1- App	(8)						
	a.								
	b.								
	c. If Vijay appears for lot of interviews, then he is not								
	unemployed.								
	d.								
		interviews							

Or

(b) (i) Prove the following by Indirect method. $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$ (ii) Prove the following by direct method $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$ (8)

17. (a) (i) Using mathematical induction show that CO2-App (8)
$$n^3 + 2n$$
 is a multiple of 3..

(ii) Solve $a_n - 4a_{n-1} + 4a_{n-2} = 2^n, a_0 = 1, a_1 = 1$ CO2-App (8)

Or

- (b) (i) Calculate the number of positive integers not exceeding 250 CO2 App (8) that are divisible by 2,3,5 or by 7
 - (ii) Using generating functions Solve $a_n = 3a_{n-1} + 5^n$, $a_0 = 4$ CO2 -App (8)
- 18. (a) (i) Let G be a finite group of order 'n' and H be any subgroup of CO3-U (10) G. Then Show that the order of H divides the order of G. (i.e) O(H) / O(G)
 - (ii) The binary operation * is defined on Q^+ such that CO3-App (6) $a * b = \frac{ab}{3}, a, b \in Q^+$, Show that $(Q^+, *)$ is ab abelian Group.

Or

- (b) $S = Q \times Q$, such that binary operation defined by CO3-U (16) (a,b)*(x,y) = (ax,ay+b)
 - (i) Prove that (S, *) is a semi group
 - (ii) Is it commutative
 - (iii) Find the identity Element
 - (iv) Find the inverse of (1,3)*(2,1) and (2,1)*(1,3)

- 19. (a) Compute the Fourier Transform of $f(x) = \begin{cases} a - |x| & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases}$ (16) and hence evaluate (i) $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{4} dx$ (ii) $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx$ Or
 - (b) (i) Find Fourier sine & cosine transform x^{n-1} and hence Show CO4-App (8) that $\frac{1}{\sqrt{x}}$ is self reciprocal under Fourier sine & cosine transform (ii) Determine the Fourier sine transform of e^{-4x} and hence CO4-App (8) determine the value of $\int_{0}^{\infty} \frac{x \sin 5x}{16 + x^{2}} dx$
- 20. (a) (i) Solve the difference equation $y_{n+2} 6y_{n+1} + 8y_n = 5^n$ given CO5-App (8) that $y_0 = 0, y_1 = 0$

(ii) Using Convolution theorem find
$$z^{-1} \left[\frac{10z^2}{(5z-2)(2z+1)} \right]$$
 CO5-App (8)

- Or
- (b) (i) Solve the difference equation $y_{n+2} + 3y_{n+1} 10y_n = 3^n$ given CO5-U (8) that $y_0 = 0, y_1 = 0$

(ii) Using Convolution theorem find
$$Z^{-1}\left[\frac{14z^2}{(7z+3)(2z-1)}\right]$$
 CO5- U (8)