A		Reg. No. :							
Question Paper Code: 91003									
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024									
First Semester									
Civil Engineering									
19UPH103- ENGINEERING PHYSICS									
(Common to ALL branches)									
(Regulation 2019)									
Dura	tion: Three hours						Maxi	mum: 1	00 Marks
Answer ALL questions									
PART A - (10 x 1 = 10 Marks)									
1.	Which of the following is the basic building block of a crystal?						CO1- U		
	(a) unit cell	(b) basis		(c) la	ttice		(d) prim	itive cell
2.	Calculate the inter planar distance for 321 plane in SC lattice with						(CO2- App	
	$a = 4.12X \ 10^{-10}m$								
	(a) $2.20 \text{X} \ 10^{-10} \text{m}$	(b) 1.0112	10^{-10} m	(c) 2.	30X 10 ⁻¹⁰	m	(d) 3.20	X 10 ⁻¹⁰ m
3.	3. The mathematical expression for existence of stimulated emission is CO1- U proposed by							CO1- U	
	(a) newton	(b) einstei	n	(c) ru	therford		(d) schro	odiger
4.	Calculate the wavelength of the emission from GaAs semiconductor CO3- App laser whose band energy is 3eV.								
	(a) 4.141x10 ⁻⁵ m	(b) 4.141x	10^{-7} m	(c) 4.	141x10 ⁻³ r	n	(d) 4.14	$1 \times 10^{-2} m$
5.	Matter waves are no	Matter waves are not wavesCO1- U					CO1- U		
	(a) electromagnetic	(b) electri	c	(c) r	nagnetic		(d) trans	verse
6.	In a finite Potential	a finite Potential well, the potential energy outside the box is CO1- U							
	(a) zero	(b) infinite		(c) con	stant		(d) variable		

7.	A copper wire of length 3m and 1mm diameter is subjected to a tension of 5N. CO2- App Calculate the elongation produced, if the young's modulus of copper is 120GPa.							
	(a) 1	5m	(b) 1800m	(c) 0.125 ×10-3 m	(d) 15.9mn			
8.	Whi	ch is more ela	astic?		CO1- U			
	(a) Water (b) Air (c) Solid ((d) C	(d) Crystal		
9.	Hole	ography is bas	sed on the principle of		CO1- U			
	(a) Interference (b) diffraction (c) polarisation (d) double refraction							
10.	Maximum limit up to which stress is applied on body without deformation is called					CO1- U		
	(a) l) limit (b) elastic limit (c) strain ((d) torque		
			PART – B	(5 x 2= 10 Marks)				
11.	What are Bravias Lattices?						CO1- U	
12.	Laser is called as a non-material knife. Justify					CO2- App		
13.	Explain wave function					CO1- U		
14.	What are the effects of hammering and annealing on elasticity of a material? CO1- U						U	
15.	Define neutral axis.					CO1- U		
	PART – C (5 x 16= 80 Marks)							
16.	(a) (i) Explain the seven crystal system on the basis of lattice CO1 parameters.					U	(10)	
	(ii) α -iron of atomic weight 55.85 solidifies into BCC structure CO2 and has a density 7860 kgm ⁻³ . Calculate the radius of an atom					App	(6)	
	Or (b) (i) Apply the concepts of crystal structures and find the packing CO					IJ	(12)	
	factor of BCC and FCC.					C	(12)	
	(ii) Lithium crystalizes in BCC structure. Calculate the lattice CO2- App						(4)	
		-	b kgm ³ respectively.	eight and density for lithium are				
17.	(a)	What are the an example :		rent pumping mechanisms used in lasers? Give CO1- U				
	Or						(12)	
	(b)	-	lain the lasing schemes and working of a Nd:YAG laser. CO3- U					
				of the two states in a Nd-YAG f wavelength 6943 Å at 300 K.	CO3-	Арр	(4)	
				2				

18.	(a)	Deduce Rayleigh jeans law and Wien's displacement law from Planck's law of radiation.	CO2- U	(16)
		Or		
	(b)	(i) Derive the Schrodinger's time independent wave equation on the basis of de-Broglie's hypothesis	CO4- U	(12)
		(ii) A neutron of mass 1.675×10^{-27} kg is moving with a kinetic energy 10 keV. Calculate the de-Broglie wavelength associated with it.	CO4- App	(4)
19.	(a)	Explain three moduli of elasticity with suitable diagram. Or	CO1- U	(16)
	(b)	(i) Categorize the various factors affecting the elastic nature of the materials.	CO3- U	(12)
		(ii) A spherical ball contracts in volume by 0.01% when subjected to a normal pressure of 10^8 Nm ⁻² . Find the bulk modulus of the material.	CO6- App	(4)
20.	(a)	(i) Classify lasers based on active medium with one example for each.	CO1- U	(8)
		(ii) Transition occurs between metastable state E_3 and an energy state E_2 just above the ground state. If emission is at 1.1µm Or	CO3- App	(8)
	(b)	Explain molocular gas laser and with neat sketch, explain the	CO1- U	(16)

(b) Explain molocular gas laser and with neat sketch, explain the CO1- U (16) construction and working of CO_2 laser using energy level diagram.