	Α	Reg. No.	:									
Question Paper Code: 51005												
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024												
First Semester												
Computer Science and Engineering												
15UCY105 - APPLIED CHEMISTRY												
(Common to EEE, ECE, EIE, IT and Biomedical Engineering)												
(Regulation 2015)												
Duration: Three hours Maximum: 100 Ma							Mark					
Answer ALL Questions												
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	Arrange the covalent bond configurations sp^3-sp^3 , sp^2-sp^2 and $sp-sp$ in CO1-increasing order of strength.											
	(a) $sp^3-sp^3 < sp-sp < sp^2-sp^2$ (b) $sp^2-sp^2 < sp^3-sp^3 < sp-sp$											
	(c) $sp^{3}-sp^{3} < sp^{2}-sp^{2} < sp-sp$			(d) $sp-sp < sp^2 - sp^2 < sp^3 - sp^3$								
2.	The bond order in oxygen is						CO1-					
	(a) 1	(b) 2	(c)	3				((d) 4			
3.	Dry corrosion is a process of contact of two m			etals							CO2-	
	(a) Indirectly	(b) Directly	(c)	Oppo	ositel	у		((d) R	lever	sibly	/
4.	Using the data given l	below find out the strong	gest rec	lucing	g agei	nt.						CO2-
	$E^{-}Cr_{2}O_{7}^{-2}/Cr^{3+} = 1.33V, E^{-}Cr^{3+}/Cr = -0.74V, E^{-}Cl_{2}/Cl^{-} = 1.36V, E^{-}MnO_{4}^{-}/Mn^{2+} = 1.51V.$											
	(a) Cl ⁻	(b) Cr	(c)	Cr^{3+}				((d) N	/In ²⁺		
5.	Primary batteries are	examples of										CO3-
	(a) Reversible cells	(b) Fuel cells	Fuel cells(c) Sensors(d) Irreversible cells									
6.	In ion – selective elec	n ion – selective electrodes the change in p^{H} is sensed by CO3-					CO3-					
	(a) pellet electrode		(b)	refere	nce e	electr	ode					
	(c) glass membrane		(d)	glass	electi	rode						

7.	Wha	at is the range of v	isible region?			CO4- R		
) 200-400 nm (b) 400-1000 nm (c) 400-850 nm (d) 400-7		50 nm				
8.	Whi	Thich of the following transitions is the highest energy transition?						
	(a) r	n to σ^*	(b) n to π^*	(c) σ to σ^*	(d) π to π	*		
9.	The	number of boding	g sites in a monome	er is referred to as its		CO5- R		
	(a) f	functionality	(b) tacticity	(c) Co-polymers	(d) degree of polymeri	sation		
10.	The fibre which is made from acrylonitrile as monomer							
	(a) I	Rayon	(b) Acrylic fibre	(c) Nylon	(d) PVC			
PART - B (5 x 2 = 10 Marks)								
11.	Distinguish between ionic compounds and covalent compounds.							
12.	2. Identify the types of corrosion in the following and explain the mechanism (i) Iron C knife with a wooden handle (ii) Welded stainless steel parts							
13.	Differentiate primary cells and secondary cells							
14.	A solution of thickness 3 cm transmits 30% of indicdent light. Calculate the concentration of the solution, given extinction Co efficient $\in = 4,000 \text{ dm}^3 \text{mol}^{-1} \text{ cm}^{-1}$					CO4- App		
15.	Give the synthesis and uses of Nylon 66					CO5- R		
	PART – C (5 x 16= 80 Marks)							
16.	 (a) What do you mean by hybridization? Explain with diagram the CO1- U formation of Oxygen (O₂) and Hydrogen (H₂) using molecular orbital theory. 					(16)		
			C					
	(b)	Explain the con molecule using N		in a Homo and hete	ero diatomic CO1-U	(16)		
17.	(a)	Describe in deta Poggendroff's n		-	e potentially CO2-U	(16)		
	(b)			corrosion by modifying	ng the metal CO2-U	(16)		
18.	(a)	(i) Explain H ₂ -O	2 fuel cell. Give its	merits and demerits	CO3- U	(8)		
		(ii) What are che	mically modified e	electrodes? Explain the	eir types. CO3- U	(8)		
			С	r				

	(b)	Describe the construction and working of lead acid storage battery. Compare the lead acid storage battery with that of the fuel cell.	CO3- U	(16)
19.	(a)	Summarize the working principles of thermo gravimetric analysis Or	CO4- U	(16)
	(b)	(i) Explain with a schematic diagram the working of Differential Scanning Calorimetry (DSC). List the merits of DSC.	CO4- U	(8)
		(ii) Explain the thermo gravimetric analysis of any one chemical compound with neat block diagram.	CO4- U	(8)
20.	(a)	(i) Discuss the methods available in chemical and electrochemical doping of conducting polymer in detail	CO5- U	(8)
		(ii) What is OLED? Explain its structure, advantages and disadvantages of OLED.	CO5- U	(8)
		Or		
	(b)	What are liquid crystals? Discuss the applications of liquid crystals in	CO5- U	(16)

the field of electronics.

##