Reg. No. :	
------------	--

Question Paper Code: U5203

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024

Fifth Semester

Computer Science Engineering

21UCS503 THEORY OF COMPUTAION

(Regulation 2021)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. Design a DFA to accept strings of a's and b's having even no of a's also check CO2-App whether the string **w1=abaa** is accepted or not.
- 2. Obtain a NFA to accept the Language L with input symbol {0, 1} in which it CO2-App accepts all string ending with 01.
- 3. State Pumping Lemma for Regular language and its advantages. CO1- U
- 4. Construct a Regular expression which accepts {0, 1} the set of all binary CO2-App strings Containing the third symbol from the left end is '1'.
- Simplify the following CFG by removing unit Production. CO2-App S->A|1, A->01|10
- 6. List out the applications of Context Free Grammar. CO1- U
- 7. Define Linear Bounded automataCO1- U
- 8. Check whether the given language $L = \{a^n b^n | n \ge 1\}$ is CFL or not. CO1- U
- 9. Construct a Turing Machine which accepts the string W= aba over the input symbol {a,b}
- 10. Differentiate Recursive and Recursively Enumerable LanguageCO1- U

(ii) Construct Regular Expression for the following DFA. CO2-App (8)

(i) Construct an ε -NFA to accept the language indicated by the

(b) Consider the following ε -NFA. Compute the ε -Closure of each CO2-App (16)state and find its equivalent DFA.

11. (a) Convert the 4

PART – B (5 x 16= 80 Marks
following NFA to its equivalent DFA

	а	b
->q1	{q1,q2}	$\{q2\}$
*q2	{q3}	$\{q2\}$
q3	{q3}	{q3,q4}
*q4	φ	φ
	Or	

CO2-App

(8)

following regular expression ((01+001)*0*)*.

12. (a)

Or

(b) (i) Find the regular expression for the following deterministic CO2-App (8)finite automata using State Elimination Method.

(ii) Construct an NFA to accept the language indicated by the CO2-App (8)following regular expression (0+1)*(00+11)

13.	(a)	 (i) Convert the following CFG to Greibach Normal Form S->CA BB B->b SB C->b 	CO2-App	(10)
		A->a	CO2 4	
		(ii) Simplify the Following Context Free Grammar. S->AB CA	CO2-App	(6)
		B->BC AB		
		A->a		
		C->aB b		
		Or		
	(b)	(1) Convert the following CFG to GNF $S > AAIO$	CO2-App	(10)
		S->AA 0 A->SS 1		
		 (ii) Consider the following productions S->0B 1A A->0 0S 1A A 	CO2-App	(6)
		B->1 1S 0BB		
		For the string W=00110101, find a leftmost derivation		
14.	(a)	Convert the PDA M=($\{q0,q1\},\{0,1\},\{X,Z0\},\delta, q0,Z0,\Phi$) into Grammar. Where δ is defined as a. $\delta(q0,0,Z0) = (q1,XZ0)$	CO2-App	(16)

- b. $\delta(q0,0,X) = (q1,XX)$ c. $\delta(q0,1,X) = (q1, \epsilon)$ d. $\delta(q1,1,X) = (q1, \epsilon)$ e. $\delta(q1, \epsilon, X) = (q1, \epsilon)$ f. $\delta(q1, \epsilon, Z0) = (q1, \epsilon)$ Or
- (b) (i) Construct a PDA for the given grammar and check the CO2-App (16) validation of W1=aa*a0 and W2= (a0+a).
 - $E \rightarrow I | E + E | E^*E | (E)$ I $\rightarrow a | Ia | 0 | I0.$
 - (ii) Construct a PDA for the language $L=\{a^mb^nc^m \mid m,n \ge 0\}$

- 15. (a) (i) Describe in detail about programming Techniques for Turing CO2-App (16) Machines.
 - (ii) Explain how Turing Machine is coded.

Or

- (b) Write short notes on
 - (i) Two way infinite tape TM.
 - (ii) Multiple Tracks Turing Machine.

CO2-App (16)