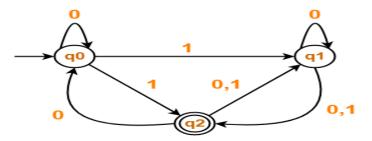
С		Re	g. No. :					
		Quest	tion Paper	Code: <mark>955</mark>	<mark>04</mark>			
		B.E./B.Tech. DE	GREE EXAN	IINATION, A	PRIL 20	024		
			Fifth Sem	ester				
		Com	puter Science	Engineering				
		19UCS504 -	- THEORY O	OF COMPUTA	TION			
			(Regulation	n 2019)				
Dur	ation: Three h	ours	Maxim			laximum:	100 Marks	
		A	Inswer ALL (Questions				
		PA	RT A - (5 x 1	= 5 Marks)				
1.	The smallest finite automata which accepts the language $\{x \mid x \text{ is a word over } \sum = \{a,b\}$ and length of x is divisible by 5} has states.						CO2- Ap	
	(a) 4	(b) 5	(0	c) 6		(d) 7		
2.	Two automata's are equal when it satisfies the following conditions.						CO1-	
	(a) their accepting and non accepting states are equal							
	(b) initial and final states are equal							
	(c) they accept at least one same string							
	(d) all the ab	ove						
3.	The Given grammar G:Comparison(1) S->AS(2) S->AAS(3) A->SA(4) A->aaWhich of the following productions denies the format of Chomsky Normal Form?Formation of Chomsky Normal							
	(a) 2,4	(b) 1,3		(c) 1, 2, 3, 4		(d) 2, 3	, 4	
4.	The language accepted by a Linear Bounded Automata:							
	(a) Type0	(b) Type1	(c) Ty	pe2	(d) [']	Туре3		
5.	TM is superior than PDA because it accepts							
5.	1 III IS Superi		- 11 m				CO1-1	

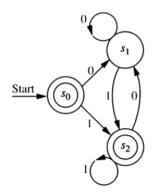

PART - B (5 x 3 = 15 Marks)

6.	List out the differences between DFA , NFA and \in NFA.	CO1- U
7.	What is meant by equivalent states in DFA?	CO1- U
8.	What is the relationship between Inference, Derivation and Parse Tree	CO1- U
9.	Define Pumping lemma for CFL.	CO1- U
10.	Define Post Correspondence Problem.	CO1- U
	PART – C (5 x 16= 80Marks)	

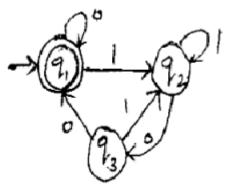
11. (a) Convert the given NFA to DFA.

(b)

CO2-App (16)



Convert the given NFA to DFA. CO2- App (16)


12. (a) Convert the Regular Expression (01+001)*00 into ε -NFA. CO2-App (16)

Or

(b) Construct a regular grammar that generates the language accepted CO2- App (16) by this finite state automaton.

13. (a) Construct Regular Expression for the following DFA. CO2-App (16)

Or

- (b) Find the minimized DFA for the following regular expression (a/b)* CO2- App (16) abb.
- 14. (a) Construct a PDA for the given grammar and check the validation of CO2- App (16) abcba and aba.
 S -> aSa | bSb | c.

Or

- (b) Construct a PDA accepting by empty stack for the language $\{a^n b^{2n} CO2\text{-}App (16) | n \ge 1\}$.
- 15. (a) Design a Turing Machine for L={ $0^n 1^n |n \ge 1$ } CO2- App (16) Or
 - (b) Construct a TM to perform reverse operation. CO2- App (16)