A		Reg. No. :									
]	Ouestion Paper (Code:	U4M	26	1					
	L										
	B.E./B	B.Tech. DEGREE EXAN	IINAT	ION, A	PRIL	202	4				
		Fourth Sen	nester								
		Computer Science	e and D	esign							
	21UMA426-	PROBABILITY AND	STATI	STICAI	L TEO	CHN	IIQU	ES			
	(Common to	o Artificial Intelligence	and Dat	ta Scien	ce Ei	ngine	eerin	g)			
		(Regulation	s 2021))							
Dura	ation: Three hours				Ν	laxii	mum	: 100) Ma	rks	
		Answer All Q	uestior	ıs							
		PART A - (10 x 1	= 10 N	larks)							
1.	Probability of an impo	ossible event is								CO	5- U
	(a) 1	(b)10	(c)0					(d)	100		
2.	The mean of the rando	om variable is denoted b	у							CO	5- U
	(a) E(X)	(b) $E(X^2)$	(c) ()				(d)	1		
3.	Which of the followin	g distribution has equal	mean a	nd Vari	ance	?				CO6	-U
	a) Geometric	(b)Poisson	(c) N	Normal				(d)	Bine	omia	1
4.	For Binomial Distribution	ition								CO	5 - U
	(a) $E(X) = \sigma^2$	(b) $E(X) > \sigma^2$	(c) <i>E</i>	$(X) < \sigma$	2			(d)	E(X	.)≥σ	2
5.	For a set of five bivar are 25 and 16 respecti	iate data(x, y) covariance vely. The Karl Pearson	e is 10. coeffici	Variand ent of c	ce of orrela	x an atior	d y is		CC	93 – .	App
	(a) 1	(b) -1	(c) 1/	/2				(d)	1/4		
6.	The joint probability of Estimate K =	lensity function is f(x, y) = k, 0	< x < 2	, 0 <	y <	1.		CC	93 – .	App
	a)4	b)-1/2	c) 1/2	2				d)5			
7.	Estimate and estimato	r are:							(CO 6	– U
	(a) Same	(b)Different	(c)M	aximun	1			(d)	Min	imur	n

8.	3. If T is an unbiased estimator for θ , then T ² is a Estimator for θ^2 .								
	(a) unbiased	(b) biased	(c) Both (a) & (b)	(d) None of t	he above				
9.	Large sample size is				CO6- U				
	(a) 30	(d) none of the	nese						
10.	F-test is used to test for	CO6- U							
	(a) Mean	(b) Variance	(c) ratio	(d) all the abo	ove				
		PART – B (5	x 2= 10Marks)						
11.	In the probability den	sity function $f(x) = k(x)$	$(x - x), 0 \le x \le 2$, Find K		CO1 -App				
12.	2. For Binomial distribution mean is 4 and variance is 2, Find $P(X = 7)$								
13.	3. If Correlation coefficient $\gamma = 0.4$, $\sigma_x = 5$, $\sigma_y = 2$, find the covariance value								
14.	Define: point estimator.								
15.	Define: Type I Error	&Type II Error.			CO6 -U				
		PART – C	(5 x 16= 80Marks)						
16.	(a) (i) A RV X has	the following distrib	ution	CO1	– App (8)				
	x01 $P(X)$ a3aComputeMean	2 3 4 a 5a 7a 9a and Variance 8 8	5 10a						
	(ii) The joint probability mass function of (X,Y) is given by CO1 – App (8) P(x,y) = k(x+3y) x = 0, 1, 4 y = 1, 2, 3 Compute marginal distribution function, and conditional distribution								
		Or							

- (b) (i) The cumulative distribution function of a random variable X is CO1 App (8) $F(x) = 1 - (1 + x)e^{-x}, x > 0$. Find the probability density function of X, mean and variance.
 - (ii) If X and Y are two random variables with joint pdf CO1 App (8) f(x, y) = K(6 - x - y), 0 < x < 2, 2 < y < 4

Compute (a) K (b) Marginal density function of x (c) E (X)

17. (a) (i) Compute the moment generating function of Poisson CO2 – App (8) distribution and hence Compute it's mean and variance.

(ii) If X is a normal variate with mean 30 and variance 25. CO2 –App (8) Compute the probabilities that Compute $P(25 \le X \le 40), P(X \ge 36), P(|X - 34| > 3)$

Or

(b) (i) A random variable X has a uniform distribution over (-3,3) CO2 – App (8) compute

(i) P(X < 2) (ii) P(|X| < 1) and (iii) P(X > -1)

(ii) Compute the moment generating function of Exponential CO2–App (8) distribution and hence Compute it's mean and variance

18. (a) (i) Obtain the rank Correlation coefficient for the following data: CO3 App (8)

Х	12	15	17	18	12	16	15	27
Y	14	10	14	13	16	10	14	15

(ii) Obtain the Correlation coefficient for the following heights (in CO3- App (8) inches) of fathers X and their sons Y.

Х	58	56	59	57	58	50	60	64
Y	67	68	65	68	72	72	69	75
Or								

(b) (i) Joint pdf of X and Y is

$$f(x, y) = \begin{cases} x + y & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & elsewhere \end{cases}$$

Compute Regression Equations

(ii) If
$$\sigma_1 = 2$$
, $\sigma_2 = \sigma_3 = 3$, $r_{12} = 0.7$, $r_{23} = r_{31} = 0.6$ Compute CO3- App (8)
(i) $r_{23,1}$ (ii) $R_{1,23}$ (iii) $b_{13,2}$ (iv) $b_{12,3}$

19. (a) (i) If $x_1, x_2, x_3 \cdots x_n$ is a random sample from a normal population CO4 - App (8)

N(
$$\mu$$
, 1). Show that $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.

CO3 - App (8)

(ii) The mean weekly sales of soap bars in departmental stores were CO4- App (8)
146.3 bars per store. After an advertising campaign the mean weekly sales in 400 stores for a typical week increased to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful?

Or

(b) A sample of size n is drawn from each of the four normal CO4 - App (8) populations which have the same variance σ^2 . The means of the four populations are a + b + c, a + b - c, a - b + c and a - b - c. What are the MLE's for a, b, c and σ^2 .

(i) Show that $\frac{\sum x_i \left[\sum x_i - 1\right]}{n(n-1)}$ is an unbiased estimate of θ^2 , for the CO4 – App (8) sample $x_1, x_2, x_3 \cdots x_n$ drawn on X which takes the values 1 or 0 with respective probabilities θ and $(1 - \theta)$.

20. (a) (i) A certain injection administered to each of 12 patients resulted CO5 – Ana (8) in the following increases of blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4 can it be classified that the injection will be, in general, accompanied by an increase in BP?

(ii) The table gives the number of aircraft accidents that occurred CO5 - Ana (8) during the various days of the week. Test whether the accidents are uniformly distributed over the week.

Days	Mon	Tue	Wed	Thu	Fri			
No. of accidents	8	12	9	14	17			
Or								

(b) (i) Two researchers adopted different sampling techniques while CO5 – Ana (8) investigating the same group of students to find the number of students falling into different intelligence level. The results are as follows

Research	Below	Averag	Above	Excellent
	Averag	e	Average	
	e			
Х	40	33	25	2
Y	86	60	44	10

(ii) Two independent samples of sizes 9 and 7 from a normal CO5 – Ana (8) population had the following values of the variables.

Sample I	17	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Do the estimates of the population variance differ significally at 5% level?

U4M26

U4M26

U4M26