
A	Reg. No. :										
Question Paper Code: R2C05											
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024											
	Sec	ond Sem	nester								
	Computer Scier	nce and I	Busin	ess Sy	vstems						
R21UCE	3205- ALGORIT	HMS AI	ND D	ATA	STRU	CTUI	RES				
	(Reg	gulations	2021	.)							
Duration: Three hours						Ν	<i>l</i> axir	num	: 100	Marks	
	Answe	r ALL Q	uesti	ons							
	PART A -	(10 x 1 =	= 10]	Marks	5)						
1. To measure Time co which:									CO1-U		
(a) describes limiting behaviour of the function											
(b) characterises a function based on growth of function											
(c) upper bound on growth rate of the function											
(d) all of the mention	ed										
2. Asymptotic analysis i	s bound	1.								CO1-U	
(a) output	(b) input		(c)	outer			(d)	inner	•		
3. Linked lists are not su	itable to for the i	impleme	ntatio	on of						CO1-U	
(a) Insertion sort	(b) Radix sort	(c) P	olync	mial	manipı	ilation	n (d	l) Bir	nary s	earch	
4. Linked list is consider memory allocation	red as an example	e of		t	ype of					CO1-U	
(a) Dynamic	(b) Static	(c)	Comp	oile tir	ne	(d))Hea	р			
5. The leaves of an expr	ession tree alway	vs contain	n?							CO1-U	
(a) operators (b) operands	(c) null	l		(d)expro	essio	n			
6. An expression tree is	a kind									CO1-U	
(a) Binary search tree	(b)Fibonacc	i tree	(c)]	Binary	y Tree			(d) T	reap		

7.	Dijks	stra's Algorithm is	Algorithm is used to solve problems.			CO1-U					
	(a) A	(a) All pair shortest path (b) Single source shortest path			1						
	(c) N	c) Network flow (d) sorting									
8.	Whic span		CO1-U								
	(a) B	oruvka's algorithm									
	(c) Kruskal's algorithm (d) Bellman–Ford alg			(d) Bellman–Ford algorithm							
9.		t will be the numb 14,12,16,6,3,10	CO1-U								
	(a) 6		(b) 5	(c) 7	(d) 1						
10.	What	CO1-U									
	(a) O	O(nlogn) (b) O(logn) (c) O(n)				(d) $O(n^2)$					
$PART - B (5 \times 2 = 10 \text{ Marks})$											
11.	Defin	ne Big Omega Nota	CO1-U								
12.	Defin	CO1-U									
13.	Defin	CO1-U									
14.	4. Compare DFS and BFS					CO1-U					
15.	Define Collision.				CO1-U						
PART – C (5 x 16= 80 Marks)											
16.	(a)	Explain the Concept of Algorithm specification and Recursion with an Example. Or			CO1 - U	(16)					
	(b)	Describe how asy space complexity	mptotic notation c	an be applied to analyze the	CO1 - U	(16)					
17.	(a)	Write a C program Queue with an ex (i) Enqueue	x	e following operations in	CO2-App	(16)					

(b) Write a C program to implement the following operations in CO2-App (16) Single Linked List.
(i) Insert at the End (ii) Insert at the beginning

(iii) Insert middle

18. (a) Write all the three tree traversal for the following tree and CO2-App (16) Explain Tree Traversals in detail.

- Or
- (b) Construct a Binary Search tree for the following data 10, 5, 15, 3, CO2-App (16)
 4, 19, 18, 20, 1,7and perform deletion of data 1, 15, 10 orderly.
- 19. (a) Explain algorithms for testing graph connectivity, such as depth- CO1- U (16) first search (DFS) or breadth-first search (BFS).

Or

- (b) Construct the minimum spanning tree (MST) for the Kruskal's CO1-U (16) Algorithm.
- 20. (a) Explain how sorting algorithms such as bubble sort, merge sort, CO1-U (16) and quicksort can be applied to arrays.

Or

(b) Write a C Program to Perform Linear and Binary Search. CO1- U (16)