•
/
\Box

Reg. No.:

Question Paper Code: R2M08

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

Computer Science and Business Systems

R21UMA208 - LINEAR ALGEBRA AND NUMERICAL TECHNIQUES

		(Regulation	s 2021)		
Dura	ation: Three hours		Maxi	mum: 100 Marks	
		Answer ALL	Questions		
		PART A - (10 x 1	= 10 Marks)		
1.	If 0,3,4 are the Eigen va		CO1-App		
	(a)12	(b) 0	(c) 3	(d) 4	
2.	If $A = \begin{pmatrix} a & 1 \\ 3 & b \end{pmatrix}$ has Eige	a and b are	CO1-App		
	(a) 1,-1	(b) -1,-1	(c) 1,1	(d) 0,1	
3. When Gauss Jordan method is used to solve AX=B, A is transferred					
	(a)Lower triangular	(b)Upper triangular	(c)Diagonal	(d) Unit	
4.	By Gauss elimination n	2, 2x + 3y = 5	CO2-App		
	(a)1,2	(b) 1,1	(c) 1,0	(d) 0,1	
5.	Gauss Seidel method	iteration converges if	the coefficient matrix i	s CO6- U	
	(a) Squarely	(b) Logically	(c) Diagonally	(d) Symmetrically	
6. Newton forward interpolation formula is used for					
	(a) Open	(b) Unequal	(c) Equal	(d) Closed	
7.	The trivial subspace of		CO6 – U		
	(a){0}	(b) V	(c) W	$(d)\{0\}$ and V	
8.	The dim(R ³) is	_		CO6–U	
	(a)1	(b) 2	(c) 3	(d) 0	

9. For any two vectors x and y in an inner product space V, find CO6 - U $||x + y|| \le$

(a)
$$||x|| + ||y||$$

(b)
$$||x|| ||y||$$

(b)
$$||x|| ||y||$$
 (c) $||x|| - ||y||$

(d)
$$||x||/||y||$$

10. x is called a unit vector then find ||x|| =_____

CO6 - U

$$(d)$$
 3

PART - B (5 x 2= 10 Marks)

11. Find the sum and product of the eigen values of the matrix

CO1 -App

$$\begin{pmatrix}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{pmatrix}$$

12. Apply Gauss-Jordan method calculate the inverse of

CO2- App

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$$

13. Show that Newton's Raphson formula to find \sqrt{N} can be expressed in the CO3 -App form

$$x_{n+1} = \frac{1}{2} \left[x_n + \frac{N}{x_n} \right].$$

14. Show that $W = \{(a,0,0) \mid a \in R\}$ is a subspace of R^3

CO₄- App

15. If
$$x = (2,1+i,i)$$
 and $y = (2-i,2,1+2i)$. Find $\langle x, y \rangle$

CO5- App

$$PART - C (5 \times 16 = 80 Marks)$$

Using Cayley Hamilton theorem 16. (a)

CO1- App (16)

find
$$A^4$$
 and A^{-1} when $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$.

Reduce the following quadratic forms into canonical form by an CO1-App (b) (16)orthogonal transformation and find its rank, index, signature and nature $x^2 + y^2 + z^2 - 2xy - 2yz - 2zx$

17. (a) (i) Apply Gauss elimination method to solve 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8. (ii) Apply Gauss Jordan method to solve CO2-App (8)

10x+y+z=12, 2x+10y+z=13, x+y+5z=7

- (b) Solve the following using triangularization method x+y+z=9,2x-3y+4z=13,3x+4y+5z=40 (16)
- 18. (a) (i) Using Lagrange's interpolation formula find f(3) for the CO3 -App (8) following data

X	0	1	2	5
Y	2	3	12	147

(ii) Using Newton's divided difference ,find the value of f(8) CO3 -App (8) from the table

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028
					_	

Or

- (b) Find the numerically largest dominant eigen value of CO3- App
 - $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by power method.
- 19. (a) (i) Verify the vectors (2,1,0), (-3,-3,1), (-2,1,-1) in \mathbb{R}^3 is a basis CO4-App of \mathbb{R}^3
 - (ii) If T: $R^2 \to R^2$ be linear transformation defined by $T(a_1, a_2) = (a_1 + a_2, a_1)$ then find nullity(T), rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem

Or

- (b) (i) Find the dimension of the subspace spanned by the vectors (1,0,2), (2,0,1), (1,0,1) in $V_3(R)$ (8)
 - (ii) Find the matrix of the linear transformation T: $R^2 \rightarrow R^2$ CO4-App (8) defined by T(a,b) =(2a-3b,a+b) for the standard basis of R^2

(16)

(8)

CO4-App

- 20. (a) (i) Show that the following function defines an inner product on $V_2(R)_{\text{where}} = (x_1, x_2)_{\text{and}} = (y_1, y_2)_{\text{and}}$ (8) $\langle x, y \rangle = 6x_1y_1 + 7x_2y_2$
 - (ii) If $\mathbf{x} = (2,1+i,i)$ and $\mathbf{y} = (2-i,2,1+2i)$ then verify CO5-App (8) Schwarz's inequality.

Or

(b) Apply Gram-Schmidt process to construct an orthonormal basis CO5-App (16) for $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1,0,1)$ $v_2 = (1,3,1)$ and $v_3 = (3,2,1)$