A	Reg. No.:						
	Question Paper Code: 94C05						
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024							
Fourth Semester							
Computer Science and Business Systems							
19UCB405 - Formal Languages And Automata Theory							
(Regulations 2019)							
Dura	ation: Three hours Maximum: 100 Marks						
Answer ALL Questions							
	PART A - $(10 \times 1 = 10 \text{ Marks})$						
1.	Which of the following is an application of Finite Automaton? CO1- U						
	(a) Compiler Design (b) Grammar Parsers (c) Text Search (d) All of the above						
2.	Which of the following does not represents the given language? CO2-App Language: {0,01}						

(b) {0} U {01}

The Grammar can be defined as: $G=(V, \sum, p, S)$ In the given

(b) Start symbol

which of the following correctly recognize the symbol '|-' in

(c) 8

Which among the following is not a part of the Context free grammar

(a) 0+01

tuple?

(a) Push

(a) Moves

(a) 6

4.

(a) Accepting State

(a) End symbol

context to PDA?

definition, what does S represents?

Which of the operations are eligible in PDA?

(b) 7

(b) Delete

The value of n if turing machine is defined using n-tuples

(d) {0} ^ {01}

(d) Production

(d) Add

(d) None of these

CO1-U

CO2- App

CO2- App

CO2- App

CO1-U

(c) {0} U {0}{1}

(b) Starting Variable (c) Sensitive Grammar

(c) Variable

(b) transition function (c) or/not symbol (d) none of the mentioned

(d) 5

(c) Insert

If T1 and T2 are two turning machines. The composite can be represented using the expression:

CO1-U

- (a) T1T2
- (b) T1 U T2
- (c) T1 X T2
- (d) None of the mentioned
- 9. A program that performs lexical analysis is termed as:

CO1- U

- (a) scanner
- (b) lexer
- (c) tokenizer
- (d) all of the above

Which of the problems are unsolvable?

CO1-U

(a) Halting problem

- (b) Boolean Satisfiability problem
- (c) Halting problem & Boolean Satisfiability problem (d) None of the above

$$PART - B$$
 (5 x 2= 10 Marks)

11. Compare NFA and DFA

CO₃- Ana

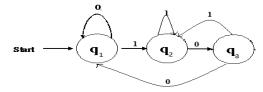
12. Define CNF with an example CO1-U

13. Define the instantaneous description of PDA

CO1-U

14. Define Turing Machine

CO1-U


15. Define Recursive Languages.

CO1-U

(16)

$PART - C (5 \times 16 = 80 \text{ Marks})$

16. Construct a regular expression corresponding to the state CO2- App (a) diagram using state elimination given in the following figure q₁-Initial and Final State

Or

Construct DFA for NFA-Epsilon given below (b)

CO2- App

(16)

	a	b	C	Epsilon
(Start) p	{p}	{q}	{r}	ф
q	{q}	{r}	ф	{p}
(Final)r	{r}	ф	{p}	{q}

17. (a) Construct the string (a*a)+a using Recursive Inference for the CO2- App (16)following CFG E - > E+E / E*E / (E) / a and Explain Types of Grammars in Detail.

Or

	(b)	(i) Convert the following Grammar in to GNF	CO2- App	(12)
		S->AB		
		$A \rightarrow BS / b$		
		B->SA / a		
		(ii) Find CNF for the following Grammar	CO2- App	(4)
		S->aAbB		
		A->aA/a		
		B->bB / b		
18.	(a)	(i) Construct PDA equivalent for the following grammar given	CO2- App	(8)
	,	below E -> E+E / E*E / a	11	. ,
		(ii) Show that the language $L=\{a^nb^nc^n\ d^n/\ n>=0\}$ is not a	CO2- App	(8)
		Context Free Language	11	()
		Or		
	(b)	(i) Construct PDA equivalent for the following grammar given	CO2- App	(8)
	, ,	below	**	
		S-> aAA $A->aS / bS /a$		
		(ii) Construct PDA to accept the Language	CO2- App	(8)
		$L=\{WCW^R / W=\{0,1\}^*\}$		
19.	(a)	Explain Halting Problem and Multi head Turing Machine in	CO1- U	(16)
	()	detail		(- /
		Or		
	(b)	Explain Multi head and Multi tape Turing machine in detail.	CO1- U	(16)
	` /			` /
20.	(a)	Explain Network Protocol and Lexical Analyzers in detail.	CO1- U	(16)
		Or		
	(b)	Explain applications of Finite Automata in detail.	CO1- U	(16)