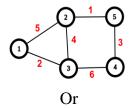
٨
$\boldsymbol{\Box}$

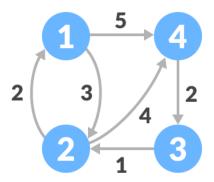
Reg. No. :					

Question Paper Code: 94C02

$B.E.\,/\,B.Tech.\,DEGREE\,EXAMINATION,\,APRIL\,2022$


Fourth Semester

Computer Science and Business Systems


	19UCB403 -	Introduction To Desi	ign And Analysis Of Al	gorithms
		(Regulatio	ons 2019)	
Dur	ation: Three hours			Maximum: 100 Marks
		Answer ALL	Questions	
		PART A - (10 x	1 = 10 Marks)	
1.	Which is the formal wrunning time.	rithm's CO1- U		
	(a) Big Oh Notation	(b) Omega Notation	(c) Theta Notation	(d) None of the above
2.	In a flowchart, an input	t or output instruction	is represented by	_ CO1- R
	(a) A diamond	(b) Rectangle	(c) Parallelogram	(d) A circle
3.	3. The approach of dynamic programming is similar to			
	(a) Parsing		(b) Hash table	
	(c) Divide and Conque	r algorithm	(d) Greedy algorithm	
4.	What is the time composite solve the Knapsack pro	•	force algorithm used to	CO1- R
	(a) O(n) (b)C	O(n!) (c)O	(2n) (d)	O(n2)
5.	Which of the followin Knapsack problem	g methods can be us	sed to solve the	CO1- R
	(a) Brute force algorith	m (b)Recurs	ion	
	(c) Dynamic Programm	ning (d) Brute	force, Recursion and D	ynamic Programming
6.	The Knapsack problem	is an example of		CO1- R
	(a) Divide and conquer	algorithm	(b) Greedy algor	rithm
	(c)1D Dynamic Program	mming	(d) 2D Dynamic	Programming

7.	In si	mplex method, the feasible basic so		CO1- R		
	(a) non negativity constraint		(b) Negativity constraint			
	(c) E	Basic constraint	(d) Common constraint			
8.	How	many constraints does flow have?			CO1- R	
	(a) (One (b) Two	(c) Three	(d) Four		
9.	Whi	ch of the problems cannot be solve	d by backtracking method?	(CO3- Ana	
	(a) n	-queen problem	(b) subset sum problem			
	(c) F	Iamiltonian circuit problem	(d) travelling salesman problem			
10.	Bran	ach and bound is a			CO1- U	
	(a) p	roblem solving technique	(b) data structure			
	(c) s	orting algorithm	(d) type of tree			
		PART – B	(5 x 2= 10 Marks)			
11.	Defi	ne Big Omega Notations.			CO1- U	
12.	Defi	ne brute force method			CO1- U	
13.	. Differentiate prim's Algorithm and Kruskal's Algorithm				CO2- App	
14.	Defi	ne Stable Marriage Problem			CO1- R	
15.		t are the additional items required attracking technique	for branch and bound? compare	e (CO3- Ana	
		PART –	C (5 x 16= 80 Marks)			
16.	(a)	(i) Discuss important problem Algorithm Analysis.	types that you face during	CO2- App	(8)	
		(ii) Write short note on Fundame Solving	-	CO2- App	(8)	
	(b)	Or Illustrate briefly on Die ob No		CO2 Ann	(16)	
	(b)	Illustrate briefly on Big oh No Theta Notations. Depict the same	•	CO2- App	(16)	
17.	(a)	Explain in detail quick sorting analysis of quick sort with examp	ole.	CO3- Ana	(16)	
		Or	•			

- (b) Explain how the merge sort can be viewed as a recursive CO3- Ana application of the Divide and conquer methodology. Suggest a pseudo code for merge sort and analyze its complexities. Trace its application to the following data set 9,4,3,8,6,2,1,5,7.
- 18. (a) Using Prim's algorithm, determine minimum cost spanning CO4- Ana (16) tree for the weighted graph shown below.

(b) Using Floyd Warshall Algorithm, find the shortest path CO4- Ana (16) distance between every pair of vertices.

19. (a) Explain geometric interpretation of Linear programming with CO1- U (16) example

Or

- (b) What is bipartite graph? Outline with example CO1- U (16)
- 20. (a) Explain the traveling salesman problem using branch & bound CO1- U (16) and backtracking.

Or

(b) Explain elaborately on backtracking algorithm. CO1- U (16)