_	-	
ŧ		

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 95C01

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

		Fifth Se	emester		
		Computer Science ar	nd Business System	ms	
		19UCB501 - Co	ompiler Design		
		(Regulation	ons 2019)		
Dur	ation: Three hours			Maximu	m: 100 Marks
		Answer AL	L Questions		
		PART A - (5 x	(1 = 5 Marks)		
1.	Compiler should retranslation process.	port the presence of	in the so	ource program,	in CO1- U
	(a) Classes	(b) Objects	(c) Errors	(d) Text	
2.	Which of the follow	ving is a top down parser	r?		CO1- U
	(a) recursive descer	t parser	(b) shift redu	ice parser	
	(c) operator precede	ence parser	(d) SLR pars	er	
3.		activity of filling up untitic actions during the co			sing CO1- U
	(a) SDT	(b) Back patching	(c) Function C	Call (d) R	ecursive Call
4.	How many points c	an we define for the bas	ic block with 8 sta	atements?	CO1- U
	(a) 9	(b) 8	(c) 7	(d) 1	0
5.	_	es function to and the location of name		atus of	CO1- U
	(a) setReg	(b) cinReg	(c) pfReg	(d)	getReg
		PART - B (5 x	3= 15 Marks)		
6.	Illustrate the langua	ge processing system.			CO1- U
7.	Consider the follow Derivation of the st	ing grammar E→E+E E ring, id+id+id.	E * E (E) id obta	in Left Most	CO2- App
8.	What are the difference	ent representations of int	ermediate code?		CO1- U

9. What is peephole and what is the need of peephole optimization? CO1- U What are the types of storage allocation strategies? 10. CO2- App $PART - C (5 \times 16 = 80 \text{ Marks})$ 11. (a) Illustrate how the following high level language statement is CO2-App (16)transformed into machine code during the compilation process x=(a+b)*(c+d) with the neat sketch of phases of compiler. Obtain DFA for the regular expression $(1(1/d)^*$. (b) CO2- App (16)CO2- App 12. (a) Design Predictive parser for the Grammar (16) $S \rightarrow (L) |a|$ L->L,S|Sand parse the input string (a,a). Or (b) Check the following grammar is SLR(1) or not? CO2- App (16)S->L=R|R $L->*R \mid id$ R->L13. (a) Explain in detail the various representation of intermediate code. CO1-U (16)Explain the translation of Arithmetic expressions in detail. (b) CO1- U (16)Explain the principal sources of optimization in detail. 14. (a) CO1-U (16)Describe peephole optimization with necessary examples (b) CO1-U (16)15. For the statement x = a / (b + c) - d*(e + f), generate three address c CO2- App (16)(a) and subsequent target code using the simple code generation algorithm. Or

Develop a quick sort algorithm for reads nine integers into an CO2-App

array and sorts them by using the concepts of activation tree.

(b)

(16)