A		Reg. No.:												
		Question Paper Co	ode:	R 1]	M0	2								
	B.E.,	B.Tech. DEGREE EXA	MINA	TIO	N, A	APRI	L 20	024						
		First Sen	nester											
		R21UMA102- MATR	IX &	CAI	CU	LUS	1							
		(Common to ALL bran	iches (exce	pt C	SBS)							
		(Regulation	s R20	21)										
Dur	ration: Three hours						N	1 axir	num	: 100) Mai	rks		
		Answer ALL	Quest	tions										
		PART A - (10 x 1	1 = 10	Mai	rks)									
1.	The Index of the matrix A is the number of Eigen values of A									CO6- U				
	(a) zero	(b) non zero							(d) positive					
2.	Nature of the Canonical form $f(x_1, x_2,) = 2x_1^2 + x_2^2$										C	:06- T		
	(a) positive definite		(c)	posi	tive	sem	i def	inite	;	(d) i	ndefi	inite		
3.		. , ,	(•)	Poss	.02 , 0					(4)		06- L		
٥.	The $(n+1)^{th}$ derivative of x^n													
	(a) n!	(b)(n+1)!		(c) i	n					(d) 0				
4.	The n^{th} derivative of x^{2n} CO6-											06- L		
	(a) $(2n)!$	(b) 2 n		(c) n	!			(d)	Non	e				
5.	The stationary points	of $x^2 - xy + y^2 - 2x + y$ i	is							(CO3	- Apr		

(b) 0, -1)

(b)4!

6. If $AC-B^2>0$ and A<0, then f(a,b) has a _____ value.

(a)(-1,0)

 $\int_{0}^{\infty} e^{-x} x^4 dx =$

(a) 4

(a) minimum

(c)(1,0)

(c) 5

(b) maximum (c) not extremum

(d)(0,1)

(d) 5!

CO6 - U

(d) inconclusive

CO4 - App

8. Value of $\Gamma(6)$ is equal to

CO4 - App

CO5

(a) 5!

(b) 4

(c) 5

(d) 6

9. $\iint_{0}^{1/2} \int_{0}^{3} \int_{0}^{3} dx dy dz$ is equal to

App

(a) 2

(b) 3

(c) 4

(d) 6

10. The region of integration of the integral $\int_{0}^{1} \int_{0}^{x} f(x, y) dxdy$ is

CO6 - U

(a) square

- (b) rectangle
- (c) triangle
- (d) circle

PART - B (5 x 2= 10 Marks)

11. Find the Eigen values of A^{-1} and $A^2 + 3I$ for the matrix

CO1 - App

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$

12. Evaluate $L_{\underset{x\to 1}{im}}\left(\frac{4x^3-1}{x-1}\right)$

CO2- App

13. If u = F(x-y, y-z, z-x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

CO3 -App

14. Find the value of

CO4 - App

$$\int_{0}^{\infty} x^{7} e^{-x} dx$$

15. Sketch the region of integration

CO5 - App

$$\int \int f(x,y) dy dx$$

$$0 0$$

$$PART - C$$
 (5 x 16= 80Marks)

16. (a) (i) Find the Eigen values and Eigen Vectors of

CO1 - App (8)

$$\begin{bmatrix} 2 & -2 & 3 \\ | & | & | \\ 1 & 1 & 1 \\ | 1 & 3 & -1 \end{bmatrix}$$

(ii) Using Cayley-Hamilton theorem find

CO1 - App (8)

$$A^{-1}$$
 for $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 5 & 4 \\ -1 & 3 & 2 \end{bmatrix}$

- (b) Reduce the Q.F $_{6x}^2 + _{3y}^2 + _{3z}^2 _{4xy} _{2yz} + _{4xz}$ to a CO1 App (16) canonical form by an orthogonal transformation and hence find rank, signature, index and nature
- 17. (a) (i) Suppose that a corpse was discovered in a hotel room at CO2 Ana (8) midnight and its temperature was 80°F. The temperature of the room is kept constant at 60°F. Two hours later the temperature of the corpse dropped to 75°F. Find the time of death.
 - (ii) Expand $e^{\cos x}$ by Maclaurin's series up to the term containing CO2 App (8) x^4

Or

- (b) (i) The radioactive Isotope Indium-III is often used for diagonosis CO2 -Ana and imaging in nuclear medicine. Its half-life is 2.8days. What was the initial mass of the isotope before decay, if the mass in 2 weeks was 5g.
 - (ii) Find the nth derivative of $\frac{x}{2x^2 + 3x + 1}$ CO2 App (8)
- 18. (a) (i) Find the dimensions of rectangular box without top of CO3 -App (10) maximum capacity with surface area 432 square meters
 - (ii) If $u = a \cosh x \cos y$, $v = a \sinh x \sin y$. then show that CO3 -App (6) $\frac{\partial (u, v)}{\partial (x, y)} = \frac{1}{2} a^2 (\cosh 2x \cos 2y)$

Or

- (b) (i) Using Taylor's series expand $e^x \sin y$ about $\left(1, \frac{\pi}{2}\right)$ up to third degree terms.
 - (ii) Obtain the extreme values of the function CO3 -App (8) $f(x, y) = x^3 y^2 (1 x y)$
- 19. (a) (i) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ CO4 -App (10)
 - (ii) Compute $\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot x} dx$ CO4 -App (6)

Or

- (b) (i) Determine the reduction formula for $\int \cos^n x dx$ CO4 -App
 - (ii) Prove that $\beta\left(m, \frac{1}{2}\right) = 2^{2m-1}\beta\left(m, m\right)$ CO4 -App (8)
- 20. (a) Using the Triple integration, compute the volume of the Sphere CO5 -App (16) $x^2 + y^2 + z^2 = a^2$

Or

- (b) (i) Changing into polar coordinates and hence evaluate CO5 -App (8) $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \left(x^2 + y^2\right) dy dx$
 - (ii) Using the double integration, compute the area of the circle CO5 -App (8) $x^2 + y^2 = a^2$

(8)