A		Reg. No. :											
Question Paper Code: U1M02													
B.E./B.Tech. DEGREE EXAMINATION, MAY 2024													
First Semester													
Civil Engineering													
21UMA102- MATRIX AND CALCULUS (Common to ALL branches)													
(Regulation 2021)													
Duration: Three hours Maximu							num:	100	Mar	ks			
Answer ALL Questions													
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$													
1.	The sum and product of the Eigen values of										CO	5- U	
	$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ are } _$												
	(a) 4, -4	(b) 0, -4		(c) 4,	2				(d) 5	, 3		
2.	The equation $ A - \lambda I $	= 0 is called the		of	the r	natri	x <i>A</i> .					CO	5- U
	(a) Characteristic equation			(b) Characteristic polynomial									
	(c) Eigen value			(d) No	one c	of the	e abo	ve					
3.	$\lim_{\theta\to 0}\frac{\sin\theta}{\theta}=$											CO	5- U
	(a) θ	(b) 2		(a) θ					(1	b) 2			
4.	Derivative of the cons	stants term is										CO	5- U
	(a) 2	(b) log <i>a</i>		(c) 3					(d) 0			
5.	The degree of the hor	nogeneous function										CO	5- U
	$u = \frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}$ is	-											
	(a) 2	(b)1		(c) 3/2	2				(d) 0			

6.	A point at which $f(x, y)$ has neither maximum nor minimum is called									
	(a) Saddle point	(d) Minimum point								
7.	$\int (ax+b)^n dx$			CO4- U						
	$(a)\frac{(ax+b)^{n+1}}{a(n+1)}$	(b) $\frac{(ax+b)^{n-1}}{a(n-1)}$	(c) $(ax + b)^n$	(d) $\frac{(ax+b)^n}{an}$						
8.	Value of $\Gamma\left(\frac{3}{2}\right) =$	_		CO4- App						
	(a) $\frac{3}{2} \frac{1}{2}$	(b) $\frac{\pi}{2}$	(c) $\frac{1}{2}$	(d) $\frac{\sqrt{\pi}}{2}$						
9.	If $x = r \cos\theta$, $y = r \sin\theta$	CO6- U								
	(a) r drdθ	(b) $drd\theta$	(c) $r^2 dr d\theta$	$(d)\frac{1}{r}drd\theta$						
10.	The region of integrat	CO6- U								
	$\int_{0}^{1} \int_{0}^{x} f(x, y) dx dy$ is									
	(a) square	(b) rectangle	(c) triangle	(d) circle						
PART – B (5 x 2= 10 Marks)										
11.	Find the constants a a	CO6- U								
	$A = \begin{pmatrix} a & 4 \\ 1 & b \end{pmatrix}$ has 3 and -2 as its Eigen values									
12.	Find n th derivative of Sin	CO2- U								
13.	If $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$ fi	CO3 -App								
14.	Calculate $\Gamma\left(\frac{7}{2}\right)$			CO4- App						
15.	Evaluate $\int_{00}^{11} \mathbf{x}^2 \mathbf{y} \mathbf{d} \mathbf{y} \mathbf{d} \mathbf{x}$			CO5- App						

PART – C (5 x 16= 80 Marks)

U1M02

16. (a) Verify Cayley-Hamilton theorem and hence find CO1- App (16) A^{-1} and A^{4} for $A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ Or

- (b) Reduce the Q.F 2xy + 2yz + 2zx to a canonical form by an CO1-App (16)orthogonal transformation and hence find rank, signature, index and nature.
- 17. (a) (i) A body originally at 80° C cools down to 60° C in 20 CO2- Ana (8)minutes, the temperature of the air being 40° C . What will be the temperature of the body after 40 minutes from the original? (ii) Expand $e^{\sin x}$ by Maclaurin's series up to the term CO2-App (8) containing x^4
 - Or
 - (b) (i) If 30% of radioactive substance disappeared in 10 days, how CO2- Ana (8) long will it take for 90% of it to disappear?

(ii) If
$$y = e^{ax} \cos bx$$
, prove that $\frac{d^2 y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$ CO2- Ana (8)

18. (a) The temperature u(x, y, z) at any point in space is CO3-Ana (16) $u = 400xyz^2$. Find the highest temperature on surface of the sphere $x^2 + y^2 + z^2 = 1$.

- (b) (i) Find the extreme values of $x^3 + y^3 3x 12y + 20$ CO₃- App (8)
 - (ii) Expand as Taylor's series $e^{\chi} \log(1+\gamma)$ about (0,0) up to CO₃- App (8)third degree term.

19. (a) (i) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
 CO4- App (8)
(ii) Compute CO4- App (8)

(ii) Compute

$$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{(\cos x)} + \sqrt{(\sin x)}} dx$$
Or

(b) Evaluate $\int_0^{\frac{\pi}{2}} \cos^m x \sin^n x \, dx$ CO₄- App (16)

- 20. (a) Using the Triple integration, compute the volume of the CO5-App (16) tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate plane x = 0, y = 0, z = 0Or
 - (b) (i) Show that the area between the parabola $y^2 = 4ax$ and $x^2 = 4ay$ CO5- App (8) is $\frac{16}{3}a^2$

(ii) Change the order of integration and hence CO5- App (8)

evaluate
$$\int_{0x}^{aa} (x^2 + y^2) dy dx \int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xy dy dx$$