

Question Paper Code: 91002

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

First Semester

Civil Engineering

19UMA102- ENGINEERING MATHEMATICS I

(Common to ALL branches)

(Regulation 2019)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

CO6- U If $A = \begin{pmatrix} a & 1 \\ 3 & b \end{pmatrix}$ has Eigen values 2 and -2, then a and b are ____

- (a) 1, -1
- (b) -1, -1
- (c) 1, 1

(d) -1, 1

If 0,3,4 are the Eigen values of a matrix A then |A| =____

CO6- U

CO6-R

(a) 0

(b) 1

(c) 2

(d) 3

3. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \underline{\hspace{1cm}}$

- - (a) θ
- (b) 2

(c) 1

(d) 0

The Radioactive decay law states that ____ 4.

CO6- R

- (a) $\frac{dN}{dt} = \lambda N$ (b) $\frac{dN}{dt} = -\lambda N$ (c) $\frac{dN}{dt} = N$
- (d) $\frac{dN}{dt} = -\lambda/N$
- If u, v, w are functionally dependent functions of independent CO6- U variables x, y, z then $\frac{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}{\partial(\mathbf{x}, \mathbf{v}, \mathbf{z})} = \underline{\hspace{1cm}}$
 - $(a) \frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}$
- **(b)** 0

(c) 1

(d) -1

The stationary points of $x^2 - xy + y^2 - 2x + y$ is _____

CO₃- App

- (a) (-1, 0)
- (b) 0, -1)
- (c)(1,0)
- (d)(0,1)

The value of $\Gamma(\frac{1}{2}) = \underline{\hspace{1cm}}$

CO6- U

(a) π

 $(b)\frac{\pi}{2}$

 $(c)\frac{\sqrt{\pi}}{2}$

(d) $\sqrt{\pi}$

 $\int_{2}^{\frac{\pi}{2}} \sin^{6}x \, dx \, is \underline{\hspace{1cm}}$

CO₄- App

(a) $\frac{\pi}{85}$ (b) $\frac{3}{256}$

 $(c)\frac{\pi}{32}$

(d) $\frac{5\pi}{32}$

 $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} dx dy dz$ is equal to

CO5- App

(a) 2

(b) 3

(c) 4

(d) 6

10. The area of an ellipse is

CO6-R

(a) πr^2

(b) π r

(c) π ab

(d) π

PART - B (5 x 2= 10 Marks)

Find the constants a and b such that the matrix $A = \begin{pmatrix} a & 4 \\ 1 & b \end{pmatrix}$ has 3 and -2 as its

CO6- U

Eigen values

12. Find n^{th} derivative of $\sin x \cos 3x$

CO6- U

13. If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

CO₃- App

14. Find the value of $\int_{0}^{1} x^{8} (1-x)^{5} dx$

CO4- App

15. Evaluate $\iint \mathbf{x} \mathbf{y} d\mathbf{x} d\mathbf{y}$ over the positive quadrant of the circle $\mathbf{x}^2 + y^2 = a^2$ CO5- App

 $PART - C (5 \times 16 = 80 \text{ Marks})$

Using Characteristic equation to the Eigen values and Eigen CO1- App (16)

vectors of $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & 2 & 0 \end{bmatrix}$

Or

- (b) Reduce the Q.F $x_1^2 + 5x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 6x_3x_1$ to a CO1- App canonical form by an orthogonal Transformation and hence find rank, signature, index and nature.
- 17. (a) (i) Expand $e^{\sin x}$ by Maclaurin's series up to the term CO2-App containing x^4
 - (ii) A pot of boiling water 100°C is removed from the fire and CO2-App allowed to cool at 30°C room temperature. Two minutes later, the temperature of the water in the pot is 90°C. What will be the temperature of the water after 5 minutes?

Or

- (b) (i) Find nth derivatives of $\frac{1}{(x^2 a^2)}$ CO2- App (8)
 - (ii) The initial mass of an Iodine isotope was 200g. Determine CO2- Ana the Iodine mass after 30 days if the half-life of the isotope is 8 days?
- 18. (a) (i) Find the maximum volume of the rectangular parallelepiped CO3- App that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - (ii) Compute the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 if CO3-App $y_1 = \frac{x_2x_3}{x_1}$, $y_2 = \frac{x_3x_1}{x_2}$, $y_3 = \frac{x_1x_2}{x_3}$ (8)

Or

- (b) (i) Find the extreme values of $x^3 + y^3 3x 12y + 20$ CO3- App (8)
 - (ii) Expand as Taylor's series $e^{x} \log(1+y)$ about (0,0) up to CO3-App (8) third degree term.
- 19. (a) (i) Compute $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}}}{(\cos x)^{\frac{3}{2}} + (\sin x)^{\frac{3}{2}}} dx$ CO4- App (8)
 - (ii) Prove that $\beta\left(\mathbf{m}, \frac{1}{2}\right) = 2^{2\mathbf{m} 1}\beta(\mathbf{m}, \mathbf{m})$ CO4- App (8)

Or

(b) Derive the relationship between Beta and Gamma functions CO4- App (16)

- 20. (a) (i) Using the Triple integration, compute the volume of the CO5-App (8) Sphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{a}^2$
 - (ii) Using the double integration, compute the area of the ellipse CO5- App $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (8)

Or

- (b) (i) Using the Triple integration, compute the volume of the CO5-App (8) Ellipsoid $\frac{\mathbf{x}^2}{a^2} + \frac{\mathbf{y}^2}{b} + \frac{\mathbf{z}^2}{c^2} = 1$