A
Δ

Reg. No.:

Question Paper Code: U3025

	B.1	E./B.Tech. DEGREE EX	KAMINATION, MA	AY 2024	
		Third S	Semester		
		Civil En	gineering		
	21UMA325- PRO	OBABILITY, STATIST	ICS AND TRANSF	FORM TECHNIQU	ES
		(Regulat	ions 2021)		
Dur	ation: Three hours			Maximum: 10	0 Marks
		Answer A	ll Questions		
		PART A - (10	x 1 = 10 Marks		
1.	Probability of an ir	mpossible event is			CO6-U
	(a) 1	(b) 10	(c) 0	(d) 100	
2.	The mean of the ra	ndom variable is denote	d by		CO6- U
	(a) E(X)	(b) E(X ²)	(c) 0	(d) 1	
3.	The degrees of free	edom in t-tests is			CO6- U
	(a) n-1	(b) n-2	(c) n-3	(d) n-4	
4.	Choose the t-test for	or mean			CO6- U
	(a) $t = \frac{\overline{x_1} - \mu}{s / \sqrt{n-1}}$	(b) $t = \frac{\overline{x_1 + \mu}}{s / \sqrt{n-1}}$	(c) t = 0	(d) None of the a	bove
5.	If $f(x + t) = f(x)$,	then f(x) is said to be ar	1		CO6- U
	(a) Odd Function	(b) Even Function	(c) Periodic functio	n (d) Self Reci	procal
6.	The Fourier consta	nt b_n in $(-\pi,\pi)$ for $x \sin x$	x is		CO6- U
	(a) x^2	(b) 3x	(c) 0	(d) 1	
7.	$F[xf(x)] = \underline{\hspace{1cm}}$	_			CO6- U
	(a) $-F_c[f(x)]$	(b) $\frac{d}{ds} \{ F_s[f(x)] \}$	$(c)-F_s[f(x)]$	$(d) - \frac{d}{ds} \{ F_c [$	f(x)

$$8. \quad F_{s}[e^{-ax}] = \underline{\hspace{1cm}}$$

CO6- U

(a)
$$\sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}$$
 (b) $\sqrt{\frac{2}{\pi}} \frac{a}{s^2 + a^2}$ (c) $\sqrt{\frac{2}{\pi}} \frac{a^2}{s^2 + a^2}$

$$(b)\sqrt{\frac{2}{\pi}}\frac{a}{s^2+a^2}$$

$$(c)\sqrt{\frac{2}{\pi}}\frac{a^2}{s^2+a^2}$$

$$(d) \sqrt{\frac{2}{\pi}} \frac{s^2}{s^2 + a^2}$$

The Z transform of a unit step function is _____.

CO5-U

(a)
$$\log(\frac{z}{z+1})$$
 (b) $\frac{z}{z+1}$

$$(b)^{\frac{z}{z+1}}$$

(c)
$$\log(\frac{z}{z-1})$$

$$(d)^{\frac{z}{z-1}}$$

10. Evaluate $Z(\frac{1}{n!})$

CO5-U

(a)
$$e^{-1/z}$$

(b)
$$e^{1/z}$$

$$(c)e^{2}$$

(d)
$$e^{1/z} - 2$$

PART - B (5 x 2= 10Marks)

11. If
$$f(x) = \begin{cases} Kxe^{-x}, x > 0 \\ o, elsewhere \end{cases}$$
 is the PDF of a RV X, Find K

CO1- App

Write the important properties of F-distribution

CO2-U

Find b_n in the Fourier series of $f(x) = |\cos x|$ in $(0,2\pi)$.

CO₃- App

State Fourier integral theorem.

CO6- U

15. Prove that $Z(\sin \frac{n\pi}{2}) = \frac{z}{z^2 + 1}$

CO₅ App

(a) A Random Variable X has the following probability distribution CO1-App (16)

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	k	2k	2k	3k	k ²	$2k^2$	7k ² +k

Find (i) 'k'

(ii)
$$P(X < 6)$$
, $P(X \ge 6)$ & $P(1.5 < X < 4.5 / X > 2)$

- (iii) If $P(X \le k) > \frac{1}{2}$ find the minimum value of 'k'
- (iv) Distribution function of x

Or

- (b) (i) The number of monthly breakdowns of a computer is a R.V. CO1 -App (8)having a Poisson distribution with mean equal to 1.8. Find the Probability that his computer will function for a month (a) Without a breakdown (b) With only one breakdown (c) With at least one breakdown
 - (ii) Using an Geometric distribution State and Prove the memory CO1 -App (8)less property.

- 17. (a) (i) A sample analysis of examination results of 500 students was CO2 -Ana made. It was found that 220 students have failed, 170 have secured a third class, 90 have secures a second class and the rest, a first class. So these figures support the general belief that the above categories are in the ratio 4:3:2:1 respectively?
 - (ii) Two group of students A and B were tested, the marks CO2-Ana (8) obtained were as follows

A								41
В	29	28	26	35	30	44	46	

Examine the significance of difference between the average marks secured by the students of the above two groups

Or

(b) (i) Two horses A and B were tested according to time (in seconds) CO2 -Ana to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level.

(ii) A group of 10 rats fed on diet A and another group of 8 rats CO2 -Ana fed on diet B, recorded the following increase in weight.

Diet	5	6	8	1	12	4	3	9	6	10
A										
Diet	2	3	6	8	10	1	2	8		
В										

Find the variances are significantly different

18. (a) Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series of period 2π in the CO3- App (16) interval $0 < x < 2\pi$.

Or

(b) The table of values of the function y = f(x) is given below:

CO3- App (16)

X:	0	$\pi/3$	$2\pi/_3$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
y:	1.8	0.3	0.5	2.16	1.3	1.76	1.8

Find a Fourier series up to the third harmonic to represent f(x) in terms of x

19. (a) Compute the Fourier Transform of
$$f(x) = \begin{cases} 1 - x^2 & |x| < 1 \\ 0 & otherwise \end{cases}$$
 CO4-App (16) and hence evaluate the value of (i)
$$\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt$$

$$\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^{3}} \right)^{2} dt$$

Or

- (b) Compute (i) $\int_{0}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$ (ii) $\int_{0}^{\infty} \frac{x^2 dx}{(x^2+9)^2}$ using Fourier CO4-App transform (16)
- 20. (a) (i) Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ CO5-App (8) given that $y_0 = 0$, $y_1 = 0$
 - (ii) Using Convolution theorem find $z^{-1} \left[\frac{8z^2}{(4z-3)(2z+1)} \right]$ CO5- App (8)
 - (b) (i) Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 2^n$ CO5- App given that $y_0 = 0$, $y_1 = 0$ (8)
 - (ii) Evaluate $Z[\cos n\theta]$ and $Z[\sin n\theta]$ CO5- App (8)