C		Reg. No.:											
		Question	Paper	· Coc	le: I	J 31	04						
	B.E./B	Tech. DEGRE	E EXA	MINA	TIO	N, A	PRII	_ _ 202	24				
		T	hird Sei	nester	•								
		Civ	vil Engi	neerin	g								
		21UCE304 - V	Water S	upply	Engi	neer	ing						
		(Re	gulatio	ns 202	1)								
Dur	ration: Three hours							Ma	axim	num:	100	Mar	ks
		Answ	er ALL	Quest	ions								
		PART A	A - (5 x	$1 = 5 \mathrm{I}$	Mark	s)							
1.	The maximum permissible turbidity for drinking water								CO)1 - U			
	(a) 35NTU	(b) 10NTU		(c) 2	20NT	U			(d)	50N	NTU		
2.	Distribution mains of a daily requirement	ny water suppl	y, is no	rmally	desi	gnec	l for i	its a	veraș	ge	(CO2	- App
	(a) 100%	(b) 150%		(c) 2	200%)			(d)	225	5%		
3.	After cleaning a slow sand filter, the filtered water is not used for							(CO4	- App			
	(a) 6 hours to 12 hours			(b) 12 hours to 18 hours									
	(c) 18 hours to 24 hours			(d) 24 hours to 36 hours									
4.	The purpose of recarbonation after lime soda treatment is							(CO4	- App			
	(a) remove excess soda			(b) remove non carbonate hardness									
	(c)recover lime			(d) convert precipitates to soluble form									

(a) 100% (b) 150%

average daily requirement

(c) 200%

(d) 250%

CO6- App

PART - B (5 x 3= 15 Marks)

6. What are the various types of water demand? CO1- U

5. Distribution mains of any water supply, is normally designed for its

7. What are the different types of pumps used commonly for pumping the water? CO2- App

8.		e the design criteria for f lash mixer and state its use in water supply eme?	CO3- App		
9.	Hov	v do you remove iron and manganese from water?	CO4- App		
10.	Wha som	CO6- App			
		$PART - C (5 \times 16 = 80 \text{ Marks})$			
11.	(a)	Describe how you would arrive at the total quantity of water to be supplied for a metropolitan area.	CO1- U	(16)	
	<i>a</i> >	Or	001 11	(1.6)	
	(b)	Explain about fire demand-its characteristics and the method of estimating it.	CO1- U	(16)	
12.	(a)	Classify the types of intakes. Also explain the working of a reservoir intake with a neat sketch.	CO2- App	(16)	
		Or			
	(b)	Classify different types of pipe materials used in the water transmission	CO2- App	(16)	
13.	(a)	Develop the design for a rectangular sedimentation tank for 5MLD flow.	CO3- App	(16)	
		Or			
	(b)	Write the design principles of flash mixer and flocculator.	CO3- App	(16)	
14.	(a)	Illustrate with the diagram of DM plant and explain the mechanism of cation and anions removal. Or	CO4- App	(16)	
		Formulate the design parameters for Demineralization process and state the resins types available in the market.	CO4- App	(16)	
15.	(a)	What are the functions of service reservoir? Briefly outline the design Aspects of Service Reservoir?	CO6- App	(16)	
	(1.)	Or	006	(1.0	
	(b)	How would you estimate the storage capacity of reservoir?. Explain the methods available.	CO6- App	(16)	