	Question Pa	per Code: 54	4022		
A	Reg. No. :				

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and Chemical Engineering)

(Regulation 2015)

Maximum: 100 Marks

Duration: Three hours

(c) Parabolic interpolation formula

5.

is called

(a) Trapezoidal rule

	Answer ALL	Questions	
	PART A - (10 x 1	= 10 Marks)	
1.	The sufficient condition for the convergence of (a) $ f(x)f''(x) > [f'(x)]^2$	of iteration method is (b) $ \emptyset'(x) > 1$	CO1- R
	(c) $ f(x)f''(x) < [f'(x)]^2$	$(d) \emptyset'(x) < 1$	
2.	The condition for convergence of Gauss Jac system of simultaneous algebraic equation is	obi method for solving a	CO1- R
	(a) A = 0	(b) Orthogonal matrix	
	(c) $ A \neq 0$	(d) Diagonally dominant system	
3.	Newton's forward interpolation formula is no value of y using a given value of x only when	• • • • • • • • • • • • • • • • • • • •	CO2- R
	(a) At the beginning of the table	(b) At the middle of the table	
	(c) At the end of the table	(d) Far beyond the given upper valu	e of 'x'
4.	If only two pair values (x_0, y_0) and (x_1) Newton's forward formula reduces to	(y_1) are given then the	CO2- R
	(a) Linear interpolation formula	(b) Non-linear interpolation formula	ı

The process of numerical integration of a function of a single variable

(b) Simpson's rule

(d) Exponential polynomial

(c) Cubature

CO₃-R

(d) Quadrature

6.	The	order of error in the Tra	pezoidal rule is			CO3- R
	(a) ($O(h^4)$	(b) O(h ³)	(c) O(h ⁵)	(d) O(h	n ²)
7.	Run	ge-Kutta method of first	order is same as			CO4- R
	(a) I	Euler's method		(b) Modified Euler'	s method	
	(c) T	Γaylor series method		(d) Milne's method		
8.	metl	number of prior values in hod is	•			CO4- R
	(a) 4	4	(b) 6	(c) 5	(d) 2	
9.	The	equation $u_{xx} + u_{yy} = 0$	is of			CO5- R
	(a) I	Elliptic type		(b) Parabolic type		
	(c) I	Hyperbolic type		(d) Non homogeneo	ous type	
10.		interval in which the im le solution is	plicit formula (Crank-	Nicholson) provides		CO5- R
	(a) ($0 < \lambda \le 1$	(b) $0 < \lambda \le 2$	(c) $1 < \lambda \le 2$	(d) 0 <	$\lambda \leq \frac{1}{2}$
			$PART - B (5 \times 2 = 10)$	Marks)		L
11.	Find	d the interval for a positive	ve root of the polynom	ial $x^3 - 2x + 5 = 0$.		CO1- App
12.		$x : 0 \ 1 \ 3$ $x : 5 \ 6 \ 50$	interpolation formula	from the given data	:	CO2- App
13.		$\int_0^1 \frac{dx}{1+x}$ using two-point	Gaussian quadrature f	ormula.		CO3- App
14.	Find orde	d $y(1.1)$ if $y' = x + y$, er.	y(1) = 0 using Taylo	or's series method of	second	CO4- App
15.	State	e Crank – Nicholson diff	Ference scheme to solv	e a parabolic equatio	n.	CO5- R
			PART – C (5 x 16=	80Marks)		
16.	(a)	(i) Solve the following method, $2x + 3y - z = 3$ 2x - 3y + 2z = 2	•	Gauss elimination	CO1- A _I	op (8)
		(ii) Solve the system of 28x+4y- z =32, x Gauss-Seidel Metho	x+3y+10z = 24, $2x+17$	7y + 4z = 35 by	CO1- A _I	op (8)
			Or			

- (b) (i) Find the positive root of $f(x) = 2x^3-3x-6 = 0$, by N-R method. CO1- App (8)
 - (ii) Determine the largest eigen value and the corresponding CO1- App (8) eigen vector of

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ -10 & -1 & 2 \end{bmatrix}$$
 by power method.

17. (a) (i) Find y at x = 43, by using Newton's forward interpolation CO2- App formula from the following data, (8)

X	40	50	60	70	80	90
у	184	204	226	250	276	304

(ii) The population of a town in the census is as given in the data. CO2- App
Estimate the population in the year 1996 using Newton's backward interpolation.

Year (x)	1961	1971	1981	1991	2001
Population	46	66	81	93	101
(in 000's)					

Or

(b) (i) Using Newton's divided difference formula, find values of CO2- App (8) f (2) from the following data.

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(ii) Find f (27) by using Lagrange's formula for the data given CO2-App (8) below.

X	14	17	31	35
f(x)	68.7	64.0	44.0	39.1

18. (a) (i) Find y' and y'' at x = 1.5 from the following table,

X	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59

CO₃- Ana

(8)

(ii) Find $\int_{1.6}^{2.8} f(x) dx$ by Simpsons $(1/3)^{rd}$ rule from the CO3-Ana (8) following table.

X	1.6	1.8	2.0	2.2	2.4	2.6	2.8
f(x)	4.95	6.05	7.39	9.02	11.02	13.46	16.44

Or

 $\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy$ using the Trapezoidal and Simpson's rules with h = k = 0.5

 $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given y(0) = 1 at x = 0.2 and x = 0.3 using Runge – Kutta method of 4th order.

Or

(b) (i) Find y(0.2) correct to 3 decimals given CO4- App (8)
$$\frac{dy}{dx} = 1 - 2xy, y(0) = 0 \text{ by using Taylor Series Method.}$$

(ii) Using Milne's method find y(2) given
$$y' = \frac{1}{2}(x + y)$$
 given CO4- App (8) $y(0) = 2$, $y(0.5) = 2.636$, $y(1) = 3.595$ and $y(1.5) = 4.968$.

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, subject to

(i)
$$u(0,y) = 0$$
, $0 \le y \le 4$

(ii)
$$u(4,y) = 12 + y$$
, $0 \le y \le 4$

(iii)
$$u(x,0) = 3x, 0 \le x \le 4$$

(iv) $u(x,4) = x^2$, $0 \le x \le 4$ by dividing the square into 16 square meshes of side 1.

Or

(b) Using Explicit scheme solve the wave equation CO5- App (16)
$$u_{tt} = u_{xx}$$
, $0 < x < 1$, $t > 0$, given $u(x, 0) = u_t(x, 0) = u(0, t) = 0$ and $u(1,t) = 100 \sin(\pi t)$. Compute u for 4 times steps with $h = 0.25$.