A		Reg. No. :										
		Question Pape	r Cod	e: l	J 4M	[24	٦					
	B.E./	B.Tech. DEGREE EX	AMIN	ATIC)N, A	APR	IL 20)24				
		Fourth	Semest	er								
		Bio Medica	l Engin	eerin	g							
	21UMA424	4 - PROBABILITY A	ND INI	FERE	ENTI	AL	STA	TIST	TICS			
		(Common to]	Biotech	nolo	gy)							
		(Regulati	ions 202	21)								
Dur	ation: Three hours							Ma	ixim	um:	100 1	Marks
		Answer AL	LL Ques	stions	5							
		PART A - (10	x 1 = 1	0 Ma	rks)							
1.	Probability of an impo	ossible event is									(CO6-U
	(a) 1	(b) 10	(c)	0					(æ (b		
2.	Probability of sure eve	ent is									C	CO6- U
	(a) 0	(b) 1	(c)	2					(d)10		
3.	If X and Y are independent	ndent random variable	es then								C	CO6- U
	(a) $f(x,y) = f(x) \cdot f(y)$	(b) $f(x,y) = f(x) + f(y)$	(c) (c)	f(x,y	/) = () ((d) N	lone	of th	e ab	ove	
4.	The marginal density	function of X is									C	CO6- U
	(a) f(y)	(b) f(x,y)	(c)	f(x)					(d) f ($\left x \right y$)
5.	If the Random Process $R(\tau) = 16 + 9e^{- \tau }$ Then	ss {X(t)} with mean the Variance of the p	has A	uto c is	orre	latio	n fur	nctio	n		CO	3- App
	(a) 16	(b) 25	(c)	6					(d) 9		
6.	Given $R(\tau) = 25 + \frac{4}{1+6}$	$\frac{1}{\tau^2}$ What is E[X ² (t)]?									CO3	8- App
	(a) 25	(b) 29	(c)	26					(d) 27	,	
7.	The system is said to l	be stable if									(CO6- U
	(a) $\int_{-\infty}^{\infty} h(t) dt < \infty$ (b)	$D)\int_{-\infty}^{\infty}h(t) dt > \infty \qquad (C)$	$\int_{-\infty}^{\infty} h(t) d$	t > 0	I		(d) N	lone	of tł	ie ab	ove	

8. If $S_{XX}(\omega)$ and $S_{YY}(\omega)$ are the input and output power spectral density and CO6- U $H(\omega)$ is the transfer function then (a) $S_{yy}(\tau) = \left| H(\omega) \right|^2 S_{yy}(\omega)$ **(b)** $S_{yy}(\tau) = \left| H(\omega) \right|^2 S_{yy}(\omega)$ (C) $S_{yy}(\omega) = |H(\omega)|^2 S_{yy}(\omega)$ (d) None of the above 9. Large sample size is CO6- U (b) >30(a) 30 (c) < 30(d) None of the above 10. Small sample size is CO6-U (a) 30 (b) > 30(c) < 30(d)None of the above $PART - B (5 \times 2 = 10 \text{Marks})$ 11. Find the mean for the discrete RV X with probability distribution CO1-App

Х	-2	-1	0	1
P(X)	0.4	0.1	0.2	0.3

12. The joint \overline{PDF} of the RV (X,Y) is given by

$$f(x, y) = \begin{cases} e^{-(x+y)}, & 0 < x, y < \infty \\ 0, & otherwise \end{cases}$$

Are X And Y Independent?

- 13. Compute the auto correlation function $|R_{xx}(\tau)| \le R_{xx}(0)$ CO3-App
- 14. Calculate the value of the system transfer function, if the input of the system CO4-App with impulse response $h(t) = e^{-\alpha t} U(t)$.
- 15. A sample of size 10 has mean 58, standard deviation18.4 and population mean CO5- Ana 50, Compute the calculated value of 't' distribution.

16. (a) (i) A Random Variable X has the following probability distribution CO1 - App (8)

X=x	0	1	2	3	4	5	6	7		
P(X= x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2+k$		
Find	(i) 'k'	,								
	(ii) $P(X > 6), P(0 < X < 4)$									

(ii) Define Binomial distribution. Find the moment generating CO1-App (8) function and Hence find mean and variance

CO2-Ana

(b) If the density function of a continuous random variable X is given by CO1 - App (16)

 $\mathbf{f}(\mathbf{x}) = \begin{cases} ax & ; \ 0 \le x \le 1 \\ a & ; \ 1 \le x \le 2 \\ 3a - ax & ; \ 2 \le x \le 3 \\ 0 & otherwise \end{cases}$

(i) Find the value of "a"

(ii) Find the distribution function of X

17. (a) If joint probability distribution function X and Y is given by CO2 -Ana (16)
P(x, y) = k (2x + 3y), for x = 0, 1, 2 & y= 1, 2,3 then find all marginal and conditional probability distribution function of X and Y and also find P(X+Y).

Or

(b) From the following data, find

(i) the two regression equations

(ii) the coefficient of correlation between the marks in Economics and Statistics

(iii) the most likely marks in Statistics when marks in Economics are 30

Marks in Economics	25	28	35	32	31	36	29	38	34	32
Marks in Statistics	43	46	49	41	36	32	31	30	33	39

18. (a) (i) If the auto correlation function of the random binary transmission CO3- App (8)
is given by
$$R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \text{ Find the Power spectral density} \\ 0 & ; |\tau| \ge T \end{cases}$$

function

(ii) A stationary process has an autocorrelation function given by CO3- App (8) $R(\tau) = 25 + \frac{4}{1+6\tau^2}$ Find the Mean and Variance

Or

(b) (i) If the Power spectral density of a WSS processes is given by CO3- App (8)

$$\mathbf{S}(\boldsymbol{\omega}) = \begin{cases} \frac{\mathbf{b}}{\mathbf{a}} (\mathbf{a} - |\boldsymbol{\omega}|) & ; & |\boldsymbol{\omega}| \leq \mathbf{a} \\ 0 & ; & |\boldsymbol{\omega}| > \mathbf{a} \end{cases}$$

Find the auto correlation function of the Process.

CO2- Ana (16)

(ii) Find the power spectral densities of the following auto CO3- App (8) correlation function $R(\tau) = e^{\frac{-\alpha^2 \tau^2}{2}}$

- 19. (a) A random process X (t) having the autocorrelation function CO4- App (16) $R_{xx}(\tau) = P e^{-\alpha |\tau|}$ Where b is a constant is applied to the input of the system with impulse response h(t)= e^{-bt}U(t) where b is a constant. Find the autocorrelation of the output Y (t). Or
 - (b) If X (t) is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du \text{ then}$ (i).R_{XY}(τ) = R_{XX}(τ)* h(τ) (ii).R_{YY}(τ) = R_{XY}(τ)* h(- τ) (16)

(iii).
$$\mathbf{S}_{XY}(\omega) = \mathbf{S}_{XX}(\omega) * \mathbf{H}(\omega)$$
 (iv). $\mathbf{S}_{YY}(\omega) = \mathbf{S}_{XX}(\omega) * |\mathbf{H}(\omega)|^2$

20. (a) Two researchers A and B adopted different techniques while rating CO5- Ana (16) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

-	-	•	-							
Researchers	Below	Average	Above	Genius	Total					
	Average		Average							
А	40	33	25	2	100					
В	86	60	44	10	200					
Total	126	93	69	12	300					
OR										

(b) Two independent samples of sizes 9 and 7 from a normal population CO5- Ana (16) had the following values of the variables.

Sample	18	13	12	15	12	14	16	14	15
Ι									
Sample	16	19	13	16	18	13	15		
II									

Identify the sampling distribution, Do the estimates of the population variance differ significantly.