

	Reg. No. :				
	Question Paper Code: U3B06				
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024					
Third Semester					
Biomedical Engineering					
21UBM306 - DIGITAL LOGIC CIRCUITS					
(Regulations 2021)					
Duration: Three hours		Maximum: 100 Marks			
	Answer All Questions				
	PART A - (10x 2 = 20 Marks)				
1.	Express the function $Y = A+BC$ in canonical POS			CO1-	App
2.	Simplify (A'+B) (A+B)			CO1-	App
3.	The output of the combinational circuit given below is			CO1-	App

For the device shown here, let all D inputs be LOW, both S inputs be HIGH, CO1-App 4. what is the status of the Y output? Explain your answer with an example

- Tabulate the differences between edge triggering and level triggering in 5. CO2-U sequential circuits.
- Mention the steps for the design of asynchronous sequential circuit 6 CO2-U
- Define dynamic hazard. When do they occur? 7 CO3-U
- How to differentiate fundamental mode from pulsed mode asynchronous 8 CO3-U sequential circuit.
- 9 Why RAMs are called as Volatile? CO4-U
- Differentiate static and dynamic RAM. 10 CO4-U

11. (a) Obtain (a) minimal sum of product and (b) minimal product of sum CO1-App (16) expression for the given below y = M(1,2,3,7,8,9,10,11,14,15) using Karnaugh map method and draw the logic diagram

- (b) Find a minimal sum-of-products for the Boolean expression CO1-App (16) $f(w, x, y, z) = \sum m(1,2,3,7,8,9,10,11,14,15)$ using the Quine-Mc Cluskey method.
- 12. (a) Implement the following Boolean function using an 8:1 CO2-App (16) multiplexer considering D as the input and A,B,C as selection lines F(A, B, C, D) = AB'+BD+B'CD'

Or

- (b) Write a brief note on the following combinational circuits: CO2-App (16)
 (i) Full adder (ii) Full subtractor
- 13. (a) Outline the working principle of JK FF and explain the CO3-App (16) Master/Slave JK FF.

Or

- (b) Using SR flip flops, design a parallel counter which counts in the CO3-App (16) sequence 000,111,101,110,001,010,000,...
- 14. (a) Design an asynchronous sequential circuit with two input X and Y CO3-App (16) and one output Z. The output Z=1 if X1 changes from 0 to 1.Z=0 if X2 changes from 0 to 1, and Z=0 otherwise.
 - Or
 - (b) Design a circuit that has no static hazards and implement the CO3-App (16) Boolean function $F(A,B,C,D) = \Sigma$ (0,2,6,7,8,10,12) using AND-OR logic.
- 15. (a) Implementation the following Boolean function using PAL CO4-Ana (16) $W(A,B,C,D)=\sum m(2, 12, 13)$ $X(A,B,C,D)=\sum m(7,8,9,10,11,12,13,14,15)$ $Y(A,B,C,D)=\sum m(0,2,3,4,5,6,7,8,10,11,15)$ $Z(A,B,C,D)=\sum m(1,2,8,12,13)$

Or

(b) A Combinational Circuit is defined by the function: CO4-Ana (16) $F1=\sum m(3,5,7)$ F2 = $\sum m(4, 5, 7)$ Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs

Or