
	Reg. No. :														
Question Paper Code: U3B03															
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024															
Third Semester															
Biomedical Engineering															
21UBM303- PRINCIPLES OF SIGNALS AND SYSTEMS															
(Regulations 2021)															
Duration: Three hours Maximum: 10								n: 10	0 Marks						
Answer All Questions															
PART A - $(10x 2 = 20 \text{ Marks})$															
1.	Sketch the given signal.										C	02	Ana		
	u[n+2] - u[n-3]														
2.	2. Is the signal $x(t)=10\cos(2\pi t) + \sin(5\pi t)$ a periodic signal. If it is, determine the fundamental period?									ine	C	02	Ana		
3.	State Convolution property for laplace transforms.										CO1- U				
4.	Define fourier transform pair.									CO1- U					
5.	Define LTI-CT systems.										CO1- U				
6.	. What are the tools used for analysis of LTI-CT systems?										CO1- U				
7.	. Define Sampling theorem.										CO1- U				
8.	Write the main condition to avoid aliasing?									CO1- U					
9.	Illustrate the relationship between imp a DT-LTI system.	pulse	e respo	onse	anc	l tra	nsfer	fun	ction	of	CO3- App				
10.	Is the discrete time system described l causal?	by th	e diff	eren	ce e	equat	ion y	y (n)	=x (-n)	CO3- App				
	PART	– B	(5 x 1	6=	80N	lark	5)								
11.	(a) Classify the different types of sys	stems Or	s and	expl	ain	them	1.			CC)3-A	рр	(16)		

(b) For each of the following input-output relationship, check whether CO3-App (16)

the corresponding system is linear, time invariant and causal.
(a) y(t)=t²x(t-1)
(b) y[n]=x²[n-2]

12. (a) Determine the trigonometric Fourier series for the periodic signal x CO3-App (16) (t) shown in the figure.

Or

(b) Calculate the Laplace Transform of the following signals and sketch CO3-App (16) the ROC
 (i) x(t) =e^{-2t} u(t).

(ii) $x(t) = e^{-at}u(t) + e^{-bt}u(-t)$

13. (a) An LTI system is represented by $d^2y(t)/dt^2 + 5 dy(t)/dt + 6y(t) =$ CO3-App (16) dx(t)/dt + x(t) with initial conditions y(0)=1, y'(0)=3. Conclude the output of the system, when the input is x(t)=u(t).

- (b) Examine the convolution y(t) of the given signals. CO3-App (16) (i) $x(t)=\cos u(t)$, h(t)=u(t)(ii) x(t)=u(t), h(t)=u(t)(iii) x(t) = u(t+1); h(t) = u (t-2) (iv) $x(t) = e^{-at}u(t)$ $h(t) = e^{-bt}u(t)$
- 14. (a) Consider the analog signal x(t)= 5sin4000πt+12cos2000πt. CO3-App (16)
 (i) Discuss the Nyquist sampling rate.
 (ii) If the analog signal is sampled at Fs = 5000 Hz, Formulate the discrete time signal obtained by sampling.

(b) Find the impulse response of the discrete time system described by CO3-App (16) the difference equation

y(n-2)-3y(n-1)+2y(n) = x(n-1)

15. (a) Determine the system function and output response y(n) of a linear CO3-App (16) time invariant discrete time system specified by the equation y(n)-1.5 y(n-1)+0.5 y(n-2)=2x(n)+1.5 x(n-1)

Or

(b) Obtain the direct form I and Direct form II realization of the system CO3-App (16) described by the difference equation y(n) + 0.75y(n-1)-0.125y(n-2) = x(n) + 7x(n-1) + x(n-2).

U3B03